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This paper contains a new derivation of the Radon-Nikodym
derivative on a σ-lattice. Absolute continuity is defined in this
setting, and the definition is justified by obtaining an extension
of a standard result on the uniform integrability of deriva-
tives. An application to mean convergence of martingales and
a version of Jensen's inequality are given.

Let (i2, ̂  P) be a probability space, φ a finite signed measure
on _^7 and ^£ a σ-lattice of elements of J^. By this, we mean ^/ί
contains Ω and the empty set 0 , and is closed under countable unions
and countable intersections. We denote by ^£c the collection of com-
plements of elements of ^ C An extended real valued function X on
Ω is said to be measurable with respect to ^ (we will write Xe ^/ί)
if sets of the form {X ^ α} = {ω \ X(ω) ^ a} are in ^£ for every real α.

In [3] it is shown that there exists an a.s. unique (a.s. with re-
spect to P) function Xe ^/ί such that for every real α,

φ(Λ n {X ^ a}) ^ aP(A Π {X ^ α}) Ae

Ψ{A Π {X ^ a}) ^ aP(A n {X ^ a}) A e ^ .

X is called the derivative of φ with respect to P on ^€^ We denote
this by X = D(φ, Λ).

In this paper we present a new proof of the existence of this
derivative X, based on the observation that the set {X ^ α} maximizes
φ(A) — aP(A) as A runs over ^f. We introduce what appears to be
suitable definition of absolute continuity in the present setting. Our
main result is that the collection of derivatives {D(φ, ̂ C)}, for
^to § ^ C is uniformly integrable if and only if φ is absolutely con-
tinuous with respect to P on ^£. As an application of this, we can
strengthen a result in [2] concerning mean convergence of martingales
over σ-lattices.

Finally, we prove a version of Jensen's inequality for the present
setting. This enables one to obtain very easily the results in [2].

The σ-lattice ^/έ is a σ-field if and only if ^ — ̂ J?G. It will
be noted that in all that follows, if ^ is a σ-field the standard
theory is obtained. We have here direct generalizations of the clas-
sical theory. What is remarkable is that little extra work seems to
be entailed.
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2* The derivative* We begin by defining:

( 1 ) φ+ = sup {φ(Λ) \ A G ^£)

φ- = inf {<p(Λ) I A G ̂ β } .

Then the following holds for Λ1 e ^£\ A2 e ^fί\

( 2 ) φ{Aλ) - φ- ^ 9>(^ Π 4 ) ^ Ψ{A2) - φ+ .

To establish the right hand inequality, we note that AlΓ\A2e
hence φ{A{ Π A2) <Ξ φ+. Then φ(A, Π /Λ) = ψ{A2 — φ{A{ Π A2) ^ φ(A2) — φ+.

The left hand inequality follows similarly.

THEOREM 1. (a) There is a Ae ^f such that φ(A) = φ+. (b) There
is a Ae ^/ίc such that φ(A) = φ~.

Proof. For each n^l, choose Anε ^£ such that φ(Λn) ̂  φ+ - 2~n.
Then

φ ( Q « Λ m ) = φ ( Λ % ) + J^+i φ^Am ~ ^An u # • • u Am-ι))

Σ

^ <̂>+ — Σ 2~m = 9 + — 2~m+1 .

Let A = lim sup Λn, and by continuity of φ, φ{A) = ̂ >+.
The proof of (b) is similar.

COROLLARY 1. φ(Ω) = φ+ + φ~.

Proof. Select A e ^ so that φ(A) = ^ + . Then <?(£) ^ ^ + + ̂ ~.
The reverse inequality is obtained in an obvious way.

COROLLARY 2. For A e ^ φ{A) = φ+ if and only if φ{Ac) = φ~.

Proof. If Ae^T and φ{A) = φ+, then φ(Ac) = φ(Ω) - <p(A) =

THEOREM 2. If Ae ^ ^ ί&e following are equivalent:
( a ) ?>(Λ) = φ +

( b) φ(AQ Π Λ) ^ 0 /or αiί Λo G ̂ T% α^d ?>(Λ Π Ac) ^ 0 /or

Proof. Assume (a). Then <£>(/ίc) = ?>"". The first inequality oί
(b) follows from the right hand inequality of (2), and the second from
the left hand.
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Conversely, assume (b) is valid for A e ^ C Select A1 e ^ so that
φ(A1) = φ+. Then φ(Λc n A,) ^ 0 from (2) and φ(Ac Π Λ) ^ 0 from (b),
hence <p(Λc Π A,) = 0. Similarly, φ(A Π Λ?) = 0, and so <p(Λ) = ^(ΛO = φ+.
This completes our proof.

DEFINITION. A function X e ^/έ is a derivative of φ with respect
to P if for every real α,

<P(Λ Π {X ^ α}) ^ αP(Λ Π {X ^ a}) Ae ^fc

φ(A Π {X ^ α}) ^ αP(Λ Π {X ^ α}) Ae^f .

For any real α, let Ψa — Ψ — aP, and define <£>+ and ^^ by (1),
using φa. Since for each fixed A e ^~, φa{A) is nonincreasing, so are
Ψt and φ~.

COROLLARY. X G ^ / is α derivative of φ with respect to P on
^/ί if and only if φa({X Ξ> a}) = ψt for every real α.

The reader is referred to [4], p. 108, for a classical version of
the following.

THEOREM 3. A derivative of φ with respect to P on Λ? exists,
and is a.s. unique.

Proof. Define a collection K of functions by setting

K = {Xe Λ? I φa(A Π {X ^ a}) ^ 0 all A e ^f/\ all real a) .

For any real α, we can choose Aa e ^// so that φ(Aa) = φt Let

Xα(ω) = α ω G Λ
(o )

= — oo ωe Ac

a.

Then we claim Xα e i ί . For suppose b > a. Then {Xα ^ 6} = 0 , so
φa(Λ (Ί {Xα ^ δ}) = 0. On the other hand, if b ^ α, then {Xα ^ 6} = Aa,
and 9>6(̂ [ Π {Xα ^ 6}) ^ φα(^ί Π {Xa ^ δ}) 0 by Theorem 2.

We now note that if Xe K, Ye Λί and X ^ Y, then for any
A e ^ T c ,

φa(A ΓΊ {X ^ α}) = ^α(/ί Π {Y ^ α}) + <Pα(Λ Π {α > F} n {X ^ α}).

Since /I n {α > Y) e ^/έ\ the right-most term is nonnegative, hence

( 4) φa(A n {X ^ α}) ^ ^ ( ^ Π {Y ^ α}) .

Now suppose Xl9 X2, are elements of if. Let
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α, ••

and

n{x, > α} .

α} k > 1 .

The terms on the right are pair-wise disjoint, so for any Λ e

φa(Λ n {z > a}) = Σ ?>α(Λ n A n {x* > α}) ^ o .

That ^α(/ί Π {Z ^ α}) ^ 0 follows by continuity, whence Ze K.
Let Q be a countable dense subset of the reals containing the

discontinuities of ψi. Define

where Xq is defined by (3). From the preceding argument Xe K,
and from (4),

Ψt ^ Ψq{X ^ Q ) ^ Ψq{Xq ^ q) = ^,+

for all g e Q. It follows that ^ α (X Ξ> α) = 9>+, hence X is a derivative.
Uniqueness a.s. is implied by the following lemma.

LEMMA 1. Suppose X, Y are measurable with respect to ^f, and
for all real α,

φa(Λ n {X ^ a}) ^ 0 A e

Then Y" ^ X a.s.

Proof. Choose a < 6. Then

0 ^ ^({X ^ a < b ^ Γ}) ^ ^α({X g α < b ^ Γ}) ^ 0 .

It follows that

= aP({X ^ a < b ^ Y})

and so P({X ^ a < b ^ Y}) — 0, from which our result clearly follows.
We now give some elementary properties of the derivative.

LEMMA 2. Let φ\ φ2 be finite signed measures on JFΊ with φι rg φ1.
Then D(φ\ ΛT) ^ D(φ\ ^ T ) a.s.
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Proof. Let Xk = D{φ\ ^ T ) , k = 1, 2. Then

?>i(Λ Π {X2 ^ α}) S Ψl{A ΓΊ {X2 ^ α}) ^ 0

for Λ e ^ C any real a. Since 9>i(Λί Π {X1 ^ α}) ^ 0 for Λ e ^/S% any
real α, the result follows from Lemma 1.

LEMMA 3.

D(aφ + δP, ̂ t) = aD(φ, ^/S) + δ a ^ 0

= αJ9(^, ^Tc) + δ α < 0 .

Suppose a < 0, and let 3P* = aφ + δP, and X = D(φ, ̂ £). Since
+ be ^f% we must show that Ψt = i ί ^ α l + δ ̂  ί)

X ^ ( t - b)/a)

= aφit_b)la(aX + b^t)

+ δ ̂  ί) .

This proves our assertion. When α = 0 or a > 0, similar proofs work.
Finally, we note that | D(φ, ^£) \ is a.s. finite. For

aP(X ^ α) ̂  <p(X ̂  a) ^ φ+

hence

and so

P(X = co) = lim P(X ^ α) = 0 .

Similarly we can prove P(X = — ©o) = 0.

3* Absolute continuity and uniform integrability. When

X G ̂ 7 /4 G ̂ 7 we will write

E(X; Λ) - ( XdP

if the right hand side is well defined. The following result is in
[3], but since the proof is not long, we will include it here.

THEOREM 4. If X = D(φ, ̂ f ) , then for a, b real,

^ X ^ δ}) ^ £/(X; /I Π {α ^ X ^ 6}) Λe ^ T c

g E(X;
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Proof. For any n ^ 1, choose α0, al9 , αw, with α0 = α —

K — % = (6 — a<ϊ)/n, an — δ For A e

ΓΊ {α - - ί < X ^ 6}) = Σ ?>(Λ n{ak<X ^
n k=o

^ Σ akP(A Π {αΛ < X
fe=0

As w increases, the right and left hand terms of this inequality ap-
proach the corresponding terms of (5). For Λe^f, a similar proof
works.

COROLLARY. D(φ, ^/ί) is integrable.

Proof. Since fle^f f] ̂ f% both inequalities in Theorem 4 hold,
and we obtain

Ψ{{a ̂  X ^ 6}) = ̂ (X; {α g X ^ 6}) .

Our conclusion follows from the fact that P( |X | <©o) = 1 and φ is
finite.

DEFINITION, φ is absolutely continuous with respect to P on
if the following conditions hold: (a) If A e ̂  and P(Λ) = 0, then
φ(A) ^ 0. (b) If A e ̂ tc and P(A) = 0, then φ{Λ) ^ 0.

THEOREM 5. The following are equivalent:
(a) φ is absolutely continuous with respect to P on ^//.
( b ) φ(D(φ, ̂ ) = oo) = φ(D(φ, ̂ fc) = - oo) = 0
(c) lim^c φi = lim^-oo ̂ Γ = 0
( d) There is an Xe ^// such that

φ(Λ) ^ E(X; Λ) Ae

^ E(X, A) Ae

Proof. Let X = D(φ, ^//). Then since

aP(a £ X) ^ 9>(α ̂  X < c>o)

we always have lim^^ aP(a ^ X) = 0β Now we note

0 g 9>ί = ̂ α(X ^ a)

= CP(X ^ α) - aP(X ̂  α) .

Hence
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Similarly,

lim ψς = φ{X = - oo) .

Hence, (b) and (c) are equivalent.
Now assume (a). Since P(X = oo) = 0, it follows that φ(X =

oo) ^ 0. But since <p(X^ w) ^ w P ( X ^ w) ^ 0, φ(X = oo) ^ 0 always
holds. Hence 9>(-3Γ= oo) = 0. Similarly we can prove φ(X — — oo) = 0,
hence (b) holds.

Assume (c). Select A e ^f, and suppose P(A) = 0. Then for all α,

hence φ{Λ) ^ 0. In a similar way we can prove φ(Λ) ^ 0 if A e ^/c

and P(A) = 0, so (c) implies (a).
Clearly (d) implies (a). Conversely, if (b) holds, then (d) follows

from Theorem 4 by letting a —> — oo 9 b —• oo. This completes the
proof.

EXAMPLE. Let (Ω, _^7 -P)denote the unit interval under Lebesgue
measure. Let ^/ί denote the class of all intervals of Ω, each of which
contains the number 1. Define φ({l}) = ~ 1, ^({0}) = 1, and φ(A) = 0
if {0,1} Π A = 0 . Then φ is absolutely continuous with respect to
P on ^€, but is singular with respect to P on _ ^ It is therefore
not the case that there exists a function I e ^ such that φ{A) =
S(JSΓ; /I) for all Ae^l It is not hard to verify that D(φ, ^f) = 0.
a.s.

In what follows, let ^ f be a fixed σ-lattice, and let & denote
the class of derivatives Xo = D(φ, ^f0), where ^fo^^f. For each
Xo e &r, define φΐ(X0) by (1) using ^ . Then

= φa(X0 ^ α)

- <Pa(Xo S α)

and from the definition of φ+, it is clear that φt(X0) ^ ΨZ{X) and
), where X = £>{<£>, ̂ Γ ) . We now prove our main result:

THEOREM 6. & is a uniformly integrable class if and only if
φ is absolutely continuous with respect to P on ̂ /S*

Proof. For Xo e ^ , for a > 0,

E(\Xo\;\Xo\^a) = E(X0; X0^a)- E(X0; Xo ^ -a) .

Since φ(X0 = oo) = limn_ooφ(X0 ^ n) ^ 0, we obtain from Theorem 4,

o; Xo ^ α) ^ 9>(oo > Xo ^ α) ^ φ(X0 ^ α) .
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Now,

φ(X0 ^ a) = φ(XQ ^ α, X ^ δ) + φ(X0 ^ α , X < 6)

^ ?>(X0 ^ α, X ^ δ) - δP(X0 ^ α, X ^ δ)

+ bP(XQ ^ α, X ^ b) + δP(X0 ^ α,

X < δ) ^ ^6+(X) + δP(X0 ^ a) .

Now,

αP(X0 ^ a) ^ φ(X0 ^ α) ^ ^0

+(X0)

hence,

( 6) E(X0, {Xo ^ α}) £ ^ 6 + ( )
a

If ςp is absolutely continuous with respect to P on ^ C then
lim^^ φi{X) — 0, and we can get a uniform bound on E{XQ, {Xo ^ α})
for large enough α. In a similar fashion, we can prove —E(X0; {Xo ^
— a}) is uniformly bounded if φ is absolutely continuous with respect
to P on ^ ^ proving sufficiency of this condition.

Now if sr is not uniformly integrable, there is an ε > 0 such
that for any a > 0, there is a n l o e ^ such that E{\ Xo |, | Xo| > α) > ε.
Without loss of generality, we can assume this statement holds for
the left hand side of (6), hence lim^^ φt{X) > 0, so φ is not abso-
lutely continuous with respect to D on ^f. This completes our proof.

Application. If ^/^ g ^ C fi are σ-lattices, it is shown in [1]
that D(φ, ^fn) —• D(φ, ^/ί) a.s., where ^£ is the minimal σ-lattice
containing each ^ C , n ^ 1. It follows from Theorem 6 that if φ is
absolutely continuous with respect to D on ^f, this convergence holds
in the mean as well. This strengthens a result in [2], where mean
convergence of such a sequence is shown to hold when φ is a abso-
lutely continuous with respect to P on ^ 7 However, our example
above shows this is not the most general situation.

4% Jensen's inequality* Suppose φ is a absolutely continuous
with respect to P on ^ 7 so that there is a Ye ^ such that φ(Λ) —
E(Y; Λ),ΛejK Let ^ / g ^ be a ^-lattice. We define

and call E( Y | ^ f ) the conditional expectation of Y given

THEOREM 7. Let F be a nondecreasing, convex function. If F(Y)
is integrable, then
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F(E(Y\ ^t)) ^ E{F(Y) I ̂ t) .

If G is a nonincreasίng convex function, and G{Y) is integrable,
then

G(E(Y\ Λ)) ^ E(G(Y) I ̂ /n .

Proof. We prove the second assertion—the first being similar.
Let {anx + bn; n ^ 1} be an affine lower envelope for G, with an ^ 0
all n. From Lemma 3,

anE(Y\ Λ) + bn = E(anY + bn \ ̂ c )

and since anY + bn ^ G(Y), it follows from Lemma 2 that

anE(Y\ ^€) + bn^ E(G(Y) \ Λ")) .

Our result follows by taking the supremum of the left hand side.
Suppose H is a nonnegative convex function, with H(O) = 0. We

say Xe^(H) if I G ^ and E(H(X)) <oo. If we apply Theorem 7
to the functions

F(x) = H{x) x^O

= 0 x < 0

G{x) = H(x) - F(x)

then the first assertion of the following theorem clearly holds. The
second assertion is implied by Theorem 6.

THEOREM 8. If Xe £?(H), then so is E(X\ ^ f ) . If Xe
then the collection {H(E(X\ ̂ C))}, as ^fQ runs over the σ-lattices in
^ 7 is uniformly integrable.

Integrability of conditional expectation E{X\^)> a n d πiean con-
vergence of martingales of form E(X\^n), where ^ S ^ g •••,
can be obtained Theorems 7 and 8, thus obtaining results in [2].

The author expresses his gratitude to the referee for correcting
several blunders, and suggesting a simpler proof of Theorem 1.
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