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Seebeck has proved that if the m-cell C in Euclidean %-space
En factors k times, where m ^ n — 2 and n ^ 5, then every
embedding of a compact /^-dimensional polyhedron in C is tame
relative to En In this note we prove the analogous result
for the case m + 1 = n ^ 5 and n — k ^ 3. In addition we
show that if C factors 1 time, then each (n — 3)-dimensional
polyhedron properly embedded in C can be homeomorphically
approximated by polyhedra in C that are tame relative to En.

Following Seebeck [8] we say that an m-cell C in En factors k times
if for some homeomorphism h of En onto itself and some (m — &)-cell
B in En~\ h(C) = B x P, where Γ denotes the fc-fold product of the
interval / naturally embedded in Ek and where

B x P c E*-k x Ek = En

is the product embedding.
In another paper [6] the author has studied results comparable to

Seebeck's for factored cells in E\ but the techniques employed here
differ slightly from those used in [6] and [8]. The main result
generalizes work of Bryant [2], and the final section here expands on
his methods to obtain a strong conclusion about tameness of all sub-
polyhedra in certain factored cells.

1* Definitions and Notation. For any point p in a metric space
S and any positive number d, Nδ(p) denotes the set of points in S
whose distance from p is less than δ.

The symbol A2 denotes a 2-simplex fixed throughout this paper,
dJ2 its boundary, and Int A2 its interior.

Let A denote a subset of a metric space X and p a limit point
of A. We say that A is locally simply connected at p, written 1-LC
at p, if for each ε > 0 there is a δ > 0 such that each map of dA2 into
A Π Nδ(p) can be extended to a map of A2 into A Π Nε(p). Furthermore,
we say that A is uniformly locally simply connected, written 1- ULC,
if for each ε > 0 there is a δ > 0 such that each map of dA2 into a
δ-subset of A can be extended to a map of A2 into an ε-subset of A.
Similarly, we say that A is locally simply connected in X at p, written
1-LC in X at p, if for each ε > 0 there is a δ > 0 such that each
map of dA2 into A Π Nδ(p) extends to a map of A2 into Ne(p), and we
say that A is uniformly locally simply connected in X (1-ULC in X)
if the corresponding uniform property is satisfied.
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Suppose / and g are maps of a space X into a space Y that has
a metric p. The symbol p(f, g) < ε means that p(f(x), g(x)) < ε for
each x in X.

A subset S of a metric space is called an ε-subset if the diameter
of S, written diam S, is less than ε.

A compact O-dimensional subset X of a cell C is said to be tame
(relative to C) if X Π 3C is tame relative to dC and X Π Int C is tame
relative to Int C. In addition, a O-dimensional jPσ set JP in C is said
to be tame (relative to C) if F can be expressed as a countable union
of tame (relative to C) compact subsets.

For definitions of other terms used here the reader is referred to
such papers as [3, 8].

2 Tame polyhedra in factored cells* The goal of this section
is to show that for any fc-dimensional polyhedron P in a cell C that
factors k times, En — P is 1-ULC. However, instead of arguing this
directly, we prove first that E* - C is 1-ULC in En - P.

PROPOSITION 1. If C is an (n — l)-cell in En that factors k times
(k fg n — 3) and P a k-dimensional polyhedron (topologically) embedded
in C, then En - C is 1-ULC in En - P.

Proof. Suppose C = B x P c En~* x Ek. Define a subset Z of
P as the set of all points p of P for which there exist a neighborhood
JVp of p (relative to P) and a point 6 in B such that JV, c {&} x P ,
and define Q = P — Z. We prove first that, for each point c in C,
En - C is 1-LC in #» - Q at c.

Consider c to be of the form (b,y), where beB and yelntlk

(the case yedP is similar and easier). Suppose N is a neighborhood
of (6, #) such that Nf] (B x 3P) = 0 . There exist an open subset U
of j^-fc and a contractible open subset V of P such that (b, y)e U x
F c Λ Γ By the construction of Q there exists a point yr e V such
that (6, 7/') $ Q. Let Z7' be an open subset of En~k such that

6e U'a U and (Uf x {3/'}) Π Q = 0 .

Now we obtain an open subset W of En~k such that beWaU' and
the inclusion map i: W—> U' is homotopic to a constant map.

Let L be a loop in (TΓ x F) — C. Since F is contractible to y\ L
is homotopic in (W x F) — C to a loop Z/ in TF x {2/'}. But 1/ is
contractible in

U' x {?/'} c iV - Q .

Thus, # * - C is 1-LC in En - Q at c.
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The definition of Z implies that P is locally tame at each point
of Z. Hence, if / z ί ^ ^ - Q is a map such that f{dA2) c En - P,
then / can be approximated arbitrarily closely by maps g\Δ2-+En

such that g \ dΔ2 = f\ dΔ2 and g(Δ2) c En - P. Thus, En - C is 1-LC
in En — P at each point c of C. Since C is compact, the correspond-
ing uniform property holds as well.

There may be some value in observing that this argument also
gives the following result.

PROPOSITION 2. Let B x Pa En'k x Ek = En be an m-cell
(m < n, k tί n — 3) and X a compactum in B x P such that
dim ( i n ({6} x P)) < k for each b in B. Then En - (B x P) is 1-ULC
in En - X.

THEOREM 3. If C is an (n — l)-cell in En that factors k times
(k ^ n — 3) and X is either a k-dimensional polyhedron or a (k — 1)-
dimensional compactum in C, then En — X is 1-ULC.

This theorem follows immediately from [1, Prop. 1] and either
Proposition 1 or Proposition 2.

COROLLARY 4. If C is an (n — l)-cell in En(n >̂ 5) that factors
k times (k^n — 3), then each k-dimensional polyhedron P in C is tame.

The corollary is a straightforward application of the Bryant-
Seebeck characterization of tameness [3] for codimension 3 polyhedra
in terms of the 1-ULC property.

3* Approximations in cells that factor 1 time* This section
contains a proof of the analogue of Seebeck's Corollary 5.1 [8] for
codimension one cells.

PROPOSITION 5. If C is an (n — l)-cell in En that factors 1 time,
then there exists a tame ^-dimensional Fσ set F in Int C such that, for
each point c of Int C, En - C is 1-LC in (En - C) U F at c.

Proof. Assume C = B x Id E^1 x E1 = En. Let c = (6, t) be
a point of Int C and U a neighborhood of c such that U 0 C a Int C
We assume further that U is a product neighborhood U = 27' x J,
where UraEn~ι and JczE1. Corresponding to U is a neighborhood
V of c such that any map / ' : dΔ2 —> V — C extends to a map f:Δ2 —> U
such that f~\f{Δ2) n C) is O-dimensional ([4, Cor. 2C, 2.1] or [5, Th.
3.2]). We can change this map / near C, altering only the E1 coordi-
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nates of points in the range, so that in addition f(A2) Π CaBx{t}.
We shall obtain a map g:A2 —> U satisfying

( i ) g\dA2=f\dA2=f>,
(ii) g(A2) Π C is a tame (relative to C) 0-dimensional subset of Int C.
Let ε be a positive number such that if g: A2 —> En and p(f, g) < ε,

then g(A2) c U.
Cover f~\f(A2) Π C) by the interiors of a collection of small,

pairwise disjoint 2-cells xA, iA, , A m in Int J2. Slide the sets
/GA) vertically to define a map gx: A

2 —> En satisfying
(Ad gΛA2- U A = / M 2 - U i A ,
(-BO p(gί9f)<e/29

(d) ^i(iA) ί l C c 5 x {A}, where A =£ ̂  whenever i Φ j ,
(A) gTι{Qι(A2) Π C) is 0-dimensional.
The IA'S must be chosen with sufficiently small diameters that

each set /dA) Π C is contained in the interior of a small (n — 2)-cell
in B x {t}. Thus,

(JEΊ) there exist pairwise disjoint (n — l)-cells xKγ, Jζ^ , iίΓΛ(1) in
Int C, each of diameter < ε/2, such that (J Int ̂  z> gλ(A2) Π C.
The remaining approximations gd will be so close to gγ that \J Int

Let ε2 = min {ε/4, l ^ ^ ^ ^ J 2 ) ΠC,C -\J &)}. To repeat this
process, cover gτι{gι{A2) ΓΊ C) by the interiors of a collection of a very
small, pairwise disjoint 2-cells 2 A, 2A, * ,2A(2) in U In"t 1A ̂  Int J 2.
Slide the sets ^( 2 A) vertically to define a map #2: J

2 —• En satisfying
(A2) g2\A2- ( J 2 A = <7iM 2- U 2 A ,
(•B2) ^ ( ^ 2 , ^1) < ε 2,

(C2) 2̂(2 A) Π C c ΰ x {2ίj, where 2^ ^ 2^ whenever ί Φ j ,
(A) gϊ1(g2(A2) Π C) is 0-dimensional
The 2A's must be chosen with sufficiently small diameters

that each set #i(2A) is contained in a small (n — 2)-cell in some
(ίx{A l) n (U Int &). Thus,

(E2) there exist pairwise disjoint (n — l)-cells 2Kl9 2K2y , 2Kk{2)

in U Int xKi, each of diameter < ε2, such that U Int 2K{ =) g2{A2) n C.
By continuing in this manner we construct a sequence of maps

gn: A
2 —* £7ίl satisfying analogous conditions (An) — (Bn) and an associ-

ated sequence of collections {nKι} of n — 1 cells in C satisfying an
analogous condition (En). The restrictions of condition (Bn) guarantee
that g = lim gn is a continuous function of A2 into C7, and the restric-
tions of (En) guarantee that

Thus, g(A2) Π C is a tame (relative to C) 0-dimensional subset of C
[7, Lemma 2].
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To prove the theorem from this fact, observe that for each ε > 0
there exists a countable collection {FJ of open sets covering Int C
such that any map / ' : dΔ2 —*Vi — C extends to a map g of A2 into an
ε-subset of En such that g(A2) Π C is a tame O-dimensional subset of
Int C. Since there are only countably many homotopy classes of maps
of dA2 into Vi — C, the desired set F can be defined as the countable
union of sets g(A2) Π C.

THEOREM 6. Suppose C is an (n — l)-dimensional cell in En that
factors 1 time, P is an (n — 3)-dimensional polyhedron properly em-
bedded in C, and ε > 0. There exists an s-push h of (C, P) such that
h(P) is tame relative to En.

Proof. The case n — 4 is trivial, and no push is needed [6];
hence, we assume n ^ 5. By [8, Cor. 5.1] there exists an ε/2 push
hλ of (C, P) such that h,(P Π dC) is tame. Let F denote the O-dimen-
sional Fσ set of Proposition 5. There exists an ε/2 push h2 of (C, KiP))
such that h2hγ(P) Π F = 0 and h2\ dC = 1. Let h denote the ε-push
hjii. It follows that En - C is 1-LC in E* - h(P) at each point of
Int C, and in stronger form, as shown in § 2, that E% — h(P) is 1-LC
at each point of Int C The tameness of h(P) Π dC then implies that
En - h{P) is 1-LC at every point of h(P). Thus, h(P) is tame [3].

COROLLARY 7. Lei S denote an (n — 2) sphere in Sn~\ the
(n — l)-sphere, and Σ the suspension of S in Sn, the suspension of
Sw - 1. Then there exists a tame (relative to Σ) O-dimensional Fσ set F
in Σ such that Sn - Σ is 1-ULC in (Sn — Σ) U F. Furthermore, if
P is an(n — 3)-dimensional polyhedron in Σ and ε > 0, there exists
an ε-push h of (Σ, P) such that h(P) is tame relative to S\

4* Factored cells in which all lower dimensional compacta
are locally nice. Let C = B x P c En~k x Ek = En be an r-cell
(r < n). Although the low dimensional polyhedra in C are nicely
embedded, some (k + l)-cell in C may be wild. In this section we
mention a property of certain cells B that implies every (r — l)-dimen-
sional polyhedron in C is nicely embedded.

THEOREM 8. Let B denote an m-cell in En(m ̂  n — 2) such that,
for each (m — l)-dimensional compactum Xcz B, En — X is 1-ULC,
and let C denote B x P, contained in En x Ek = En+k. Then, for
each (m + k — l)-dimensional compactum YaC, En+k — Y is 1-ULC.

Proof. It suffices to consider only the case k — 1. Let ε > 0
and w ε Int I. We shall costruct an ε-push h of (En+1, Y) such that
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(En x {w}) - h(Y) is 1-ULC. Let V denote the ε-neighborhood of
Y, {6JΓ a countable dense subset of B, and π the natural projection
of En+1 = En x Eι onto the first factor. For any open subset N of
βn+i containing (b, w) e B x I there exists a point (6', w') e N ΓΊ ( 5 x
I — Y). If AT is a connected open set of the form N = TΓ x J, then
there exists a homeomorphism # of 2£*+1 onto En+1 such that
(a) flf I En+1 - N= identity, (b) g((V, w')) - (&', w), (c) g(C) = C and
(d) πg = #. Consequently, there exist a sequence {fet } of homeomor-
phisms of En+1 onto itself and a sequence of points {&•} in J5 such
that for i = 1, 2,

( 0 ) ^(α;, fei(a?)) < ε/2* for all a; in En,
(1)

( 3 ) Λί+Jfc((&; , w)) = (&;, w) for a l l A; > 0,
( 4 ) h{C) = C
( 5 ) 7rft4 = hi.
( 6 ) ^ I £ r w + 1 - V = identity.

Furthermore, using Condition (a) and careful epsilonics we can con-
struct the sequence {hi} so that the function h = lim^^/^o . . . o/^ is
an ε-homeomorphism of En+1 onto itself. Then Condition (6) implies
that h is an ε-push of (En+\ Y).

Condition (1) implies that {&•} is a dense subset of B, and Condi-
tions (2) and (3) yield that (b'i,w)ξh{Y) (i = 1,2, . . . ) . Thus,

Π (B x {w}) is nowhere dense in B x {^}. Consequently, En x
— h(Y) is 1-ULC by hypothesis (since h(Y)czBxI), and we

obtain the desired conclusion by appealing to Theorem 1 of [l]o

We exploit the construction of the push h a second time in
proving the following:

THEOREM 9. Let B denote an (n — l)-cell in En such that, for
each in — 2)-dimensίonal compactum I c B, En — B is 1-ULC in
En - X, and let C denote B x P, contained in En x EK Then for
each (n + k — 2)-dimensional compactum Yd C, En"k — C is 1-ULC
in En+k - Y.

Proof. Simplifying as before, we consider k = 1 and c e C a point

of t h e form (b, w), where be B and we I n t 7, and we shall show t h a t

En+1 - C is 1-LC in En+1 - Y at c.
Let ε > 0. Choose a countable dense subset {6J of B. Then

reapplying the techniques found in the proof of Theorem 8, we find
an (ε/6)-homeomorphism h of of En+1 onto itself and a sequence {δ } of
points in B satisfying Conditions (0)-(6) stated there. Let U denote
the ε/6-neighborhood of b in E" and V the (ε/3)-neighborhood of w in
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Int /. Then both (6, w) and h((b, w)) are contained in U x V, and
diam (U x V) < e/2. Since B is an (n — l)-cell there exists a neighbor-
hood U' of b in J?71 such that be Uf a U and each map / of dA2 into
Ur — B can be extended to a map î 7 of A2 into [7 such that
F~ι{FA2) n 5) is O-dimensionaL

In this paragraph we prove that U' x V is a neighborhood of
λ(c) such that any loop in (U' x F) — C is contractible in an ε/2-subset
of En+1 - h(Y). Iίf:dA2 — (t/' x F) - C,/ is homotopic in (EΓ x V) - C
to a map f':dA2—* Ur x {w}. Let F\A2—> U x {w} be an extension
of / ' such that F~ι(F{A2) Γ) (B x {w}) is O-dimensionaL Once again
h( Y)Π(B x {w}) is nowhere dense in B x {w}, which means that (En — B) x
{w} is l-ULC in {{En) x {w}) - h(Y). Cover F~ι{F{A2) Π (B x {w}) by
finitely many pairwise disjoint 2-cells Dly , Dt in Int A2 such that
F\ dDi can be extended to a map Gι of Z^ into (U x {w}) — h(Y). By
redefining F as Gi on D^i = 1, , t) one can easily see that /1 dA2: dA2 —>
( ! 7 x F ) - i ( 7 ) is homotopic to a constant map.

Because h~ι is an (ε/6)-homeomorphism and diam U x V < e/2,
diam h~\U x V) < ε. In addition, h~\Uf x V) is a neighborhood of
c such that any map g: dA2 —> λ-1( [/"' x F) — C can be extended to a
map G:A2-+h~ι{U x V) — Y". This completes the proof.

COROLLARY 10. Let B denote an m-cell in En(m < n) such that,
for each (m — l)-dίmensional compactum Xd B, En — B is l-ULC in
En — X. Then each p-dirnensίonal polyhedron P in B x P c En x Ek

(p + 3 ^ n + k, p < m + k) is tame.
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