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CONCERNING DENTABILITY

MicHAEL EDELSTEIN

It is shown that ¢, contains a closed and bounded convex
body which is dentable but fails to have extreme points. On
the other hand, there exists a strictly convex, closed, sym-
metric, convex body which fails to be dentable. (Thus denta-
bility is, in general, unrelated to extremal structure.)

1. In [2], Rieffel introduced the notion of dentability for a sub-
set K of a Banach space X. Rephrased, it reads:

1.1. K is dentable if, for every ¢ > 0, there is an ¢ K and an
fe X* such that some hyperplane determined by f separates x from
K, = K~ B(x, ¢), where B(x, ¢) is the ball of radius ¢ about 2.

One of the questions asked by Rieffel [Ibid., p. 77] is whether a
closed and bounded convex set exists in some Banach space which is
dentable but has no strongly exposed points. We answer this ques-
tion by exhibiting a dentable symmetric closed convex body in ¢,
which has no extreme points at all. To further show that the con-
nection between dentability and extreme structure can be quite
tenuous, we also exhibit in ¢, a strictly convex body which (in spite
of the fact that each boundary part is exposed) is not dentable.

Another question of Rieffel, namely, whether each weakly compact
subset of a Banach space is dentable has recently been answered in
the affirmative by Troyanski [3]. The example of the unit ball in
the conjugate Banach space m is used by us (Proposition 3) to show
that, in contrast to the above, a weak*-compact set need not be
dentable.

2. Dentability properties of certain subsets of ¢, and m.

PROPOSITION 1. There is a dentable closed and bounded convex
body wn ¢, which has no extreme point.

Proof. For n=1,2,..- set B, = B((2—2""e,, 2" "), where ¢, =
{w;}ec, with 2, =1, 2, =0 for 1+ n. Let C,=(—B,)UB, and
C =v¢o(Uy-.C,). We claim that C has the desired properties.

(i) C has no extreme points.

Suppose, for a contradiction, that C has an extreme point

y = (yly y23 ..-) .
111
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Clearly, ||yl > 1 (since C, contains the unit ball) and without re-
striction of generality we may assume that |[yl|| = y, for some k.
Let {u#'™} be a sequence in co{Js-, C,} converging to y with

(1) lw™ —yl| <min(y, — 1,277  (m=1,2,...).
Write

!
(2) u(m) — Z )\liu(mi)

with ¥™?eC, =00t =1,2,---,1), and X' N\, =1. It is clear
from the definition of the B; that, for 7 > k, u/™" < 2'* < 2%, where
uy™” is the kth coordinate of ™.

Thus, by (1),

k 1 i=k 2 k
1<uf” = X + 3 M £ 23500 + 27 (1— ).
i=1 i=1 N 1=l /

i=lk+1

It follows that

(3) Sa> =2

Now let j be a positive integer with the property that |y;| < 2752,
To show that y, contrary to assumption, cannot be an extreme point,
we exhibit two points 7 and y in C such that ¥; >y, > y_; with all
other coordinates of these points equal. To this end define {#‘™} and
{u™} as follows.

Using (2), set

ﬁ(’mi) — u(mi) — u(m’i)
n Hon n
formzl,zy"',j;nij,i:LZ,"',l;

i 27 for i<k
! = o for i >k

m gl > 9k
2z =

Thus, @/ = y; + 2752 and u/™ < y; — 27%% It is now obvious that
{#™} and {4'™} converge to points ¥ and y, respectively, having the
desired properties. This completes the proof that C has no extreme
points.

(ii) C is dentable.

Let ¢ > 0 be given and choose 7 so that 2" < e. We show that
¢6(C ~ B) wehre B = B(2e,, €) does not contain 2e, € C.
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To this end, consider the set H® = {xeco (U7~ C.): ©, = 2 — 27"},
Any member & of H™ can be represented in the form h = >\, A
with ;=2 0, 27 =1 and a;€C;, 1 =1,2,---,m; m =n. Now,
by definition, A, = 37, ma8 = 2 — 27*, On the other hand,

ho = Ny + 200 = M 4+ (L — )
itm

=N — 1) +1=Z 0, + 1.
It follows that A, =1 — 27", Consequently,
|2e, — k|| =27 (he H™),
for [ (2e,), — R, ]| = |12—(2— 2| =2"" and, for k # n,
(2e, — h) = | 0@ | 1 — 2, S 207

Thus B(2e,,¢) contains H™ and clearly, C ~ H™ is convex with

2¢,¢ C~H™, We have shown that C is dentable completing thereby
the proof of the proposition.

PROPOSITION 2. In ¢, there exists a symmetric, closed and bound-
ed comvex body which is strictly convex and fails to be dentable.

Proof. Let
C= {xe co: x| + (212‘”x2>1/2 < 1} .

It is well-known (cf. [1, p. 362]) that C defines an equivalent strictly
convex norm and, therefore, only the nondentability has to be shown.
We note that for ¢ = (x, 2, +++, %, --+) € bdryC, we have ||x]|| = 1/2
so that for such an x there is an integer m with |z,| = ||z || = 1/2.
Let 1/4 > ¢ > 0 and choose 0 < 6 < ¢/2 small enough so that ||z]] =
&' || + ¢ if o’ is the vector obtained from x by replacing each co-
ordinate wx;, with |#;| =||%|l, by |z;] — 6. Next, let k& be large
enough so that |z, < J and

s 1 1/2 - =R 1/2
(B2t~ gi) = (Z2a) o
To prove nondentability, it clearly suffices to exhibit u,ve C such
that || (uw + v)/2 — 2|| < 6 and {4 — v]|| = 1/2. To this end, set u; =
v; = x; for those %+ k for which |z;| < |lz]|; w, = —v, = 1/4; and
u; = v; = x; — 0 ;/|x; |, otherwise. Since |jul| =||v]| =||2]| — J and

™ 1/2 ) \1/2 o 1/2
(Serw) =(S2ww) =(S2a) +9,
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we have u, ve C. Also, || (u + v)/2 — || < 4, since | (w + v)/2 — 2),| =
|2, | < 0, and, for all coordinates j = k& at which u, v and « are dis-
tinet, we have |((u + v)/2 — 2);] = . Finally,

— _ -1
Hw — vl = [uw, — vl = 2 "

PROPOSITION 3. The unit ball in m is not dentable.

Proof. Let 0 <e<1/4 and % = (x, 2, ---)em with ||z] < 1.
Either (i) there is an integer k with |z,| < 1/4, or (ii) for every
index 7, |x;| > 1/4.

In case (i), define Z and = by setting

Ej:(xl,xz, ...’xk_}.%,...)

g‘?:(wl,xz, °'.,xk—%’"..>

so that (1/2)(Z + z) =z and ||Z — z|| =1/2 > e.

In case (ii), define

so that ||z — 29| = 1/4.
Now, zeco{s™: 7 =1,2, ...}, For,

Ly [V R
< T ) %(x’“_ﬂx;”)

showing that /7)) Xi-,2™ — 2. Thus, the dentability condition
fails, proving the proposition.
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