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A GENERALIZATION OF KNESER’S CONJECTURE!

C. D. FEUSTEL

Let M be a closed connected 3-manifold such that
7(M) = 0. Suppose that =;(M) is a nontrivial free product
with amalgamation across the group of a closed connected
surface S other than the projective plane or 2-sphere. Then
it is shown that there is an embedded surface S in M
‘“realizing >’ the group structure above.

Our theorem also considers the case when M has bound-
ary and gives an answer to a problem of Neuwirth.

1. Introduction. In 1929 H. Kneser stated the following result
in [8].

THEOREM K. Let M be a closed, connected 3-manifold. Suppose
T.(M) is the nontrivial free preduct of two groups A, and A,. Then
there exists an embedding of the 2-sphere in M which separate M into
S-submanifolds M, and M, such that 7w (M;) = A; for 7 =1, 2.

Theorem K was confirmed by J. Stallings in his thesis. One
would like to generalize Theorem K so that one could realize geo-
metrically more complicated algebraic splittings of w(M). In [3]
we made a generalization of this form which required that M be
orientable and closed and that the splitting surface be a closed
orientable surface not the 2-sphere.

In the “Splitting Theorem” below we eliminate most of these
restraints.

2. Preliminaries. All spaces discussed in this paper are sim-
plicial complexes and all maps are piecewise linear. As usual we
will write G = A x B when the group G is the free product of A

C

and B with amalgamation over C. We shall restrict our attention
to the case when A and B are propzsr subgroups of G or equivalently
C is a proper subgroup of A and B. As usual, we shall denote the
boundary, closure, and interior of a subspace X of a space Y by
bd(X), cl(X), and int(X) respectively.

Let X Dbe a connected subspace of the space Y. Then we shall
denote the natural inclusion map from X into Y by o and the induced
homomorphism from 7,(X) into 7,(Y) by p.. Let a closed connected
surface S not the 2-sphere or projective plane be embedded in a
space X. If p,: 7(S) — 7,(X) is one-to-one, we shall say that S s

I Papakyriakopoulos gives an interesting diseussion of this conjecture in [9].
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incompressible in X. Similarly if S is a system of closed surfaces
embedded in a space X, we shall say that S ¢s incompressible in X
if each component of S is incompressible in X. We will denote [0,1]
by [ throughout this paper.

Let S be a closed, connected surface not the 2-sphere or projective
plane. Let M be a connected 3-manifold and

m(M) = A, = A,.
my(8)

Then we shall way that «,(M) splits across m,(S). We shall say that
the splitting of w, (M) above respects the peripheral structure of M
if for each component F' of the boundary of M, a conjugate of p,7,(F")
is contained either in A, or in A,.

Let S be a closed, connected, incompressible surface embedded
in M. Suppose that S separates M inte two 3-submanifolds M, and
M,. Let n(S)= A, and suppose 7, (M) = A, * A,. Consider the

0
group diagrams given in Figures 1 and 2. The group diagram in
Figure 1 is obtained by applying Van Kampen’s theorem to the de-
composition of M into M, and M,. The group diagram in Figure 2 is
obtained from the splitting of = (M) by A.,.

71(S)
/N / \
7y (My) (M)
N\ A\ A
(M) (M)
FI1GURE 1 FIGURE 2

Then we shall say that the surface S geometrically realizes the
algebraic splitting above if there is an isomorphism

p: T(M) — (M)
such that
(1) 2@(S)) = 4
(2) @@(M;)) = A; for j =1,2
(3) h, =99 " for k=1,2 3, 4.

3. The splitting theorem.

THEOREM 1. Let M be a compact, connected 3-manifold such that
(M) =0. Let S be a closed, connected surface not the 2-sphere or
projective plane. Suppose
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(M) = A, = A,
7y ()
and that this splitting preserves the peripheral structure of M. Then
there is a geometric splitting realizing the algebraic splitting above.

The proof of Theorem 1 in this paper is similar to the proof of
Theorem 1 in [3]. We shall need three lemmas in the proof of
Theorem 1 and we shall consider these at this point.

Lemma 1 is the result of a number of well known techniques
and is similar in content to Lemma 1.1 in [12]. We shall omit most
of the details of the proof.

LEMMA 1. Let M be a compact, connected 3-manifold such that
T, (M) = 0. Let X be a connected complexs and S a closed imcompres-
stble surface embedded in X and having a neighborhood homeomorphic to
S x I. We suppose that no component of S is a 2-sphere or projective
plane. Let X, k=1, -+, n be the components of X — S. We sup-
pose that (X)) =7(X,) =0 for 1 =22 and k=1, -+, m. Let f:
M~ X be a map such that f: m,(M) — 7, (X) is one-to-one and f bd(M)
does not meet S. Then there is a homotopy, constant on bd(M), of
f to a map g such that g7'(S) is an tncompressible surface in M.

Proof. One first uses the simplicial approximation theorem to
find a map ¢, homotopic to f such that ¢7'(S) is a surface in M.
Next one uses techniques developed by J. Stallings in his thesis to
fiind a map ¢g homotopic to ¢, such that ¢'(S) is an incompressible
surface in M. We note that the homotopies used could be held
constant on bd(M) since f(bd(M)) N S was empty. The lemma follows.

A 3-manifold M will be called p*irreducible if there are no em-
bedded projective planes in M and every 2-sphere in M bounds a 3-
ball embedded in M.

LEMMA 2. Let S, and S, be disjoint, incompressible, connected
surfaces which are embedded in a P*irreducible 3-manifold M. Then
if S, is homotopic to S, in M, S, U S, bounds an S, X I embedded in
M.

Proof. It is a consequence of 1.1.5 in [13] that z,;(M) = 0 for
j =2 and that the higher homotopy groups of each component of
M — (S, US,) are trivial. Let H: S x I— M be a homotopy of S, to
S.. It is a consequence of Lemma 1 that we may assume H™(S,U S,)
is incompressible in S x I. Let S* be a component of H™(S, U S,).
Then we claim S* separates S x {0} from S x {1}.
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Assume that S* does not separate S x I. Then [S*] is not
homologous to [S x {0}] in C,(S x I; Z). Since H,(S X I; Z,) = Z,
[S*] bounds a 8-chain in C,(S x I; Z,). Thus S* bounds a 3-sub-
manifold Nc S x I Let N, =¢l(Sx I~ N). Now by Van
Kampen’s theorem we have the commutative diagram shown in
Figure 8. All homomorphisms in Figure 3 are induced by inclusion.

7 (S*)

7 (Sx 1)

FIGURE 3

Since N, D S x {0}, p, is onto. Since p, and p, are one-to-one it is a
consequence of 2.5 in [1] that o, is onto. It is a consequence of the
corollary to Theorem A in [5] that N is a product line bundle.

Thus S* separates S x I. By an argument similar to the one
above we can show that the closure of either componentof S x I — S*
is a product line bundle.

It is now easy to show that H™'(S,U S, can be assumed to be
bd (S x I); one simply considers the restriction of H to a submanifold
of Sx L Lemma 2 is now a consequence of the corollary to
Theorem A in [5].

A result similar to Lemma 3 was suggested to the author by an
unknown referee. This suggestion enabled us to greatly simplify the
proof to Theorem 1. Lemma 38 is proved using standard arguments
in obstruction theory and could be stated in terms of cell complexes
and relative homotopy groups. However, it will be immediately ob-
vious in the proof of Theorem 1 that the hypotheses of our Lemma 3
are met.

LEMMA 8. Let M, be a compact, connected, 3-manifold, X a
connected complex, and F and S incompressible connected surfaces
in M, and X respectively. We suppose that S is neither a 2-sphere
or projective plane and 7w, (X) =0 for + = 2.

Let f: (M, F)— (X, S) be a map of pairs such that for some
xel
Fam (M, ) C 7S, f(2)) .

Then f is homotopic under a deformation constant on ¥ to a map
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into S.

Proof. We wish to define a map H: (Nx I, F x I)— (X, S)
such that

(1) H(n,0) = f(n) for ne N

(2) H(n,t) = f(n) for ne F,tel

(3 H(Nx {1hcS.
Of course such an H will be the desired homotopy.

Let N° be the i-skeleton of some subdivision of the pair (N, F)
for 1 =1,2,3. We define H to satisfy (1) and (2) above on

Fx IJN x{0}.

If « is any arc embedded in N* which meets F' in its endpoints, the
arc f(a) can be deformed modulo its boundary to lie in S. Thus H
can be extended to a x I. It follows that H can be extended to
N'x I. If D is a disk embedded in N* and meeting N* in bd(D),
we have defined H on bd(D) x I UD x {0}. Since H(bd(D) x {1}) is
nullhomotopic in X, it is nullhomotopic in S since S is incompres-
sible. It follows that if D is not contained in F, we may extend H
to D x {1}, Since 7,(X) =0, H can be extended to D x I. It fol-
lows that H can be extended to N? x I. Similarly we can extend
H to N®x I since m,(S) =0 and 7#,(X) = 0. This completes the
proof of the lemma.

Proof of Theorem 1. It follows from generalization 1 in [9] that
we can replace finitely many prime homotopy 3-cells in M and obtain
an irreducible 3-manifold. Since an incompressible surface can be
made to miss a finite collection of disjoint 2-spheres, we may assume
that M is irreducible. It is a consequence of Theorem 1 in [2] that M
does not admit any embeddings of the projective plane since 7,(M) =0
and 7,(M) is not finite.

Let (M., q;) be the covering space of M associated with A4;Cx,
(M, x) for j =1,2. Let g: (S, y) — (M, x) be a map such that

g*nl(s3 ?/) - Al n Az .

Let g;: S— M,, be a map covering g, i.e., ¢;g, = 9: S— M. Let
X; be the mapping cylinder of g; over M, , i.e., X; is the union of
M,; with S x I with identification g;(n) = (n,0) for » in S and j =
1,2. Let X = X, U X, identifying (n,1) in X, with (n,1) in X, for
n in S. As was shown in [2] 7(X) = 7(X;) =0 for 4 =1,2 and
1= 2. Also n(X) = 7,(M).

Let G: X— M be defined by

(1) G| M,, =gq; forj=12
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(2) G(n,t) = g(n) for (n,t)
in Sx IcX;j=1,2. Then G,: 7n(X)— 7 (M) is an isomorphism.
We denote S x {1}c X by S.

We wish to construct a map G: M — X such that

(1) G.: m(M) — m(X) is G

(2) G(bd(M)) does not meet Sc X.

Let bd(M) = U, F, where F', is a closed connected surface. By
assumption o, 7 (F,) — n, (M) is conjugate to a subgroup either of
A, or A,. We assume A,. It follows that there is a map p,: F,— M. 4,
covering p,. We define G(F,) = p.0r"

Let {a;: k=1, ---, n} be a collection of simple ares in X such
that

(1) G(alar) N Glay,) = x for ky, + k,

(2) a, runs from y in S to a point in P(F,)

(3) G(a,) is a simple are.

We extend G to G(a) to be any homeomorphism onto a;. Note that
G has been defined on Y = bd(M) U Uz, G(a,) such that for each
loopl < Y based at z (GG).[l] = [I] in 7(M, x). Thus we can extend
G by using well known techniques so that @* = G3! since G;' is an
isomorphism and 7,(X) = 0 for ¢ = 2.

We have now established the existence of the desired map G.
It is a consequence of Lemma 1 that we may assume @‘l(S) is an
incompressible surface in M. Denote the components of G™(S) by S;
for i =1, -+, m. Since S; and S are incompressible in M and X
respectively,

@G |8yt m(S) — m(S) C m(X)

is one-to-one. It is a consequence of Theorem 1 in [5] that G|8S; is
homotopic to a covering map. Thus one can assume that G18S; is
a local homeomorphism. (One can change G on a small neighborhood
of S; to achieve this result.)

We may choose any point z in M and have that

G.: m(M, 2) —> (X, G(2))

is an isomorphism. Suppose G | S; is not a homeomorphism and z in
S;. Let @ be the isomorphism of = (M, z) onto m(X, @(z)) induced
by G. Then 0(0,7.(S;, 2)) S 0.7.(S, G(2)). Since 07 (0,m.(S, G(2) is
a subgroup of w,(M, z) properly containing 0.7,(S;, 2) we would have
by Theorem 6 in [7] that S; bounds a twisted line bundle Nc M.
One can easily show using the techniques in [7], as has been done
in [4], that p,m(N,2) may be taken to be @7 p.7 (S, GR). It is
now a consequence of Lemma 3 that we may assume that G |S; is a
homeomorphism for ¢ =1, -+« m.
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As was shown in the proof of Theorem 1 in [3] every pair of
components S, and S, in G~%(S) are homotopic. Thus by Lemma 2,
S;US; bounds an S x I embedded in M. As was shown in the
proof of TheoremAl in [3] we may assume that there is a single
component S, in G7'(S) and S, is homeomorphic to S. The desired
algebraic result now follows as in the proof of Theorem 1 in [3] and
Theorem 1 is now established.

4. An application. In [10] Neuwirth asks, “Every knot group
contains the group (a, b; [a, b]). This subgroup may be obtained from
the natural inclusion of the fundamental group of a nonsingular torus
in the knot group. Suppose a knot contains the group of a closed
surface of genus g. Does there exist a nonsingular closed surface
of genus g whose fundamental group is injected monomorphically into
the knot group by the natural inclusion?”.

W. Heil has shown in [6] that, if the subgroup in question is
normal, such a surface does not exist.

THEOREM 2. A knot complement admits an incompressible embed-
ding of a closed surface of genus g > 1 if and only if its funda-
mental group splits across the group of the surface in question and
said splitting preserves the peripheral structure of the fundamental
group of the knot complement.

Proof. Since any closed surface embedded in S® separates S3,
one half of the theorem follows from Van Kampen’s theorem. The
other half follows from Theorem 1.
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