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YAsuo MATSUGU

Let S be a Stein manifold, 7 a one dimensional torus, =
a projection of the product £ =S x T onto S and D a sub-
domain of E. The main object of this paper is to prove that
D is a Stein manifold if and only if D is pseudoconvex in the
sense of Cartan and =—'(x) is not contained in D for any point
z of S.

1. A subdomain D of a complex manifold M is called pseudo-
convex if, for any boundary point x of D in M, there is a Stein
neighborhood U of x in M such that U N D is also a Stein manifold.
A pair (B, B) is called a domain over M if g is a locally biholomorphic
mapping of a complex manifold B in M. A domain (B, 8) over C"
is called a domain of holomorphy if there exists a holomorphic function
f in B such that the radius of convergence of f at any point « of B
is just the boundary distance d(x) of x.

Moreover we recall another definition. Let @,: M; — N, be two
mappings of a set M; into a set N; (1 =1,2). Then we define the
product mapping @, x @, of the product set M; x M, into the product
set N, x N, by putting (@, X ®,) (%, y) = (Pu(x), P(y)) for (w,y) e M, x M,.

The proof of our theorem falls into two parts. We first prove
it in the case of S = C”, where we construct a strongly plurisub-
harmonic function by means of Hormander [2] and reduce it to a
result of Narasimhan [3]. In general case, using the imbedding of
Docquier-Grauert [1], we reduce the theorem to the case of C”.

2. Let (B, B) be a domain of holomorphy over C”. In the com-
plex plane C select any two complex numbers @,, ®, which are linearly
independent over the real number field B. The numbers w,, w, gen-
erate a subgroup I" of C, namely

I = {me, + m,w,; m,, m, Z = addtive group of integers} .

The quotient T = C/I" is a one dimensional torus. T has a natural
complex structure and is a compact Riemann surface. The natural
map ¢: C— T is a locally biholomorphic map. We denote by FE =
B x T the product of two complex manifolds B and 7T, and by
m: E— B the projection.

We first prove the following lemma:

LEMMA. Let D be a pseudoconvex open subset of E such that

(%) is mot comtained in D for any point x of B. Then D is a
Stein manifold.
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Proof. Let 1 X 7 be the product map of the identity 1 of B and
the map z. The map 1 X 7 is a locally biholomorphic map B x C
onto E. If we denote by A the inverse image (1 X 7)™(D) of D, A
is pseudoconvex, because D is pseudoconvex. A is /'-invariant, that
is, for any fixed point ve I, A is invariant under the transformation
of BXxC:(y,2)— (y,z + 7). Let a be the restriction to A of the
- product map B8 x 1 of the map B and the identity map 1 of C, that
is, a(y, 2) = (B(y), ) for (y,2)e A. « is a locally biholomorphic map
of A into C" x C = C** and (4, @) is a pseudoconvex domain over
C', The distance function d(y, ) of the domain 4 over C"*! induces
the function d(y, t) in D. Indeed, for any point (y, t)e D, yc B, te T,
select two representatives z,2 € C of the equivalence class ¢. Then
there is ve I" such that 2 =z + v. But A is I'-invariant, and so
d(y, ') = d(y, z). Since A is pseudoconvex, by Oka [4], the function
—log d(y, z) is a continuous plurisubharmonic function in A. The
function —log d(y, t) is therefore a continuous plurisubharmonic fune-
tion in D, and so is the function

1/d(y, 1) = e

On the other hand, since B is Stein, there is a real analytic
strongly plurisubharmonie function ¢ > 0 with the following property:
for any real number ¢ > 0,

B, ={yeB;qy) <c}cB.

The function

+ q(y)

00 = 5 yl 5

defined in D is a continuous plurisubharmonic function. It holds that
D, = {(y,t)e D;v(y, V) < ¢}
C B, % Tm{(y, tye D; d(y, t) > l}cp
Cc
for any real number ¢ > 0.
Since D = U.»o D, if we show that D, is a Stein manifold, we

know by Docquier-Grauert [1], that D is itself a Stein manifold.
Fix an arbitrary real number ¢ > 0. For any point y € B, we set

A(y) = {ze C; (y,t(2)) e D} .

By the hypothesis of the lemma, it follows that A(y) £ C. Select a
complex-valued measurable function a(y) in B such that

a(y) e C — A(y) for any point ye B.
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For sufficiently small number ¢ with 0 <e <1/(c + 1) < 1/¢, we de-
fine the function s(y, ¢) in D,,, as follows:

[y — & ) = an(é)

0
(~ € Smpmg=—o|z — aff) — M0, — M@,

=
s(y,t) = —
(y’ ) €2 Jeep ‘2 ’
where o is Friedrichs’ modifier, and z in the summation >} is a re-
presentative of ¢. Clearly the sum 3 converges uniformly, and does
not depend on any choice of representative z.

Moreover, we define a function p{y, ¢} in D,., by putting

py, t) = sy, t) + Kq(y)

where K is a sufficient large constant. Since D.c D,,, and ¢ is a
strongly plurisubharmonic function in B, it follows that the function
p(y, t) is strongly plurisubharmonic in D,. By Narasimhan [3], we
can conclude that D, is a Stein manifold.

3. Now we shall prove our main theorem.

THEOREM. Let E be the product S x T of a Stein manifold S
and o complex torus T, and m be the projection E— S. Let D be
an open subset of E. Then D is a Stein manifold if and only if D
is pseudoconvexr and ' (x) is not contained in D for any point x € S.

Proof. By Docquier-Grauert [1], there are a biholomorphic map
o of S onto a regular analytic set of a domain of holomorphy (B, g8)
over C" and a holomorphic mapping o of B onto o(S) such that the
restriction p|o(S) is the identiny of ¢(S). We define a mapping
& of the product G =B x T onto £ =8 x T by putting &(z, t) =
(67 (o(x)), t) for (x,t)e G. The inverse image £7(D) of D under the
map is a pseudoconvex open subset of G and satisfies the hypothesis
of the lemma. ¢&'(D) is therefore a Stein manifold. Since D is a
regular analytic subset of the Stein manifold £'(D), D is also a Stein
manifold.
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