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The inverse image preservation problem of R-compact
(realcompact) spaces has been studied by R. Blair, N. Dykes,
and T. Isiwata. In this paper their results are drawn to-
gether, and the inverse images of FE-compact spaces under
certain kinds of mappings are studied. Actually, a more gen-
eral question, concerning the notion of E-perfect mappings,
is considered. (The inverse image of an E-compact space under
an FE-perfect mapping is FE-compact.) Classes of hereditarily
E-compact spaces and their inverse images under certain
mappings are also studied.

1. Preliminaries. Throughout this paper spaces are assumed to
be Hausdorff and mappings are continuous onto functions. The reader
is referred to [9] for basic ideas of E-compact spaces. For convenience
we review the terminology and notations. Given two spaces X and E,
C(X, E) denotes the set of all continuous functions from X into K. A
space X is said to be E-completely regular (E-compact) provided that
X is homeomorphic to a subspace (respectively, closed subspace) of
a product E™ for some cardinal m. X is said to be hereditarily E-
compact provided that every subspace of X is F-compact. A subset
A of a space X is said to be E-embedded in X provided that every
continuous function f: A — E admits a continuous extention f*: X — K,
and A is an E-closed subset of X provided that for some positive
integer n there exists a closed subset T of EF* and a continuous funec-
tion f: X — E" such that A = f~[T]. Following Frolik [3], a mapping
®: X— Y (where X and Y are completely regular spaces) is called a
Z-mapping provided that the image of every zero-set in X is closed
in Y, and following Isiwata [7], @ is called a WZ-mapping provided
that Cl;;y @7 '(y) = @~ (y) for every y in Y, where 28X and gY denote the
Stone-Cech compactifications of X and Y, respectively, and @ denotes
the Stone extension of @ from SX into £Y. A mapping is called
perfect (proper) provided that it is continuous, closed and the inverse
images of singletons are compact. It is well known that if X and ¥
are completely regular spaces, then a mapping ®: X— Y is perfect
iff 9[pX — XS pY — Y.

It follows from Theorem 4.14 of [9] that given two E-completely
regular spaces X, Y and a continuous function ®: X — Y, there exist
E-compact extensions 8,X, 8;Y of X, Y, respectively, and a continu-
ous extension @, B;X — B;Y of ®. In the sequel, we shall always
use ¢z to denote such an extension of o.

275



276 J. H. TSAI

Generalizing the notions of Z-mapping, WZ-mapping and perfect
mapping, we define the following

DEFINITION 1.1. Let X, Y be FE-completely regular spaces, and
®: X — Y be a mapping.

(@) @ is E-closed provided that ¢ maps each E-closed subset of
X to a closed subset of Y.

(b) @ is weakly E-closed provided that Cl, ,»7'(y) = @, '(y) for
each y in Y.

(¢) @ is E-perfect provided that 9.8, X — X]| & B,Y — Y.

REMARK. Let I and R denote the spaces of [0,1] and of all real
numbers, respectively. Then the concept of I-closed (weakly I-closed,
I-perfect) mapping coincides with that of Z- (WZ-, perfect, respectively)
mapping, and the concept of R-perfect mapping coincides with that
of real-proper mapping [1].

PropPosITION 1.2. A closed mapping is E-closed.

ProprosiTiON 1.3. If E is a regular space, then an E-closed
mapping 18 weakly E-closed.

We need the following lemma to prove Proposition 1.3.

LemmA 1.4. If E s regular and X 1s an E-completely regular
space, then for each closed subset F' of X and each point p in X — F),
there exists an E-closed subset A of X such that peInt Aand AN F=Q
(Int A denotes the interior of A).

Proof. Since X is FE-completely regular, by [9; Theorem 3.8],
there exists a continuous function f from X into E™ for some finite %
such that f(p) & Clzp f[F]. Since E™ is regular, there exist disjoint
open neighborhoods U, V of f(p), Clzwf[F'], respectively. Let A =
fE" — V]. Clearly, peInt 4 and AN F = 2.

Proof of Proposition 1.3. Let X, Y be FE-completely regular
spaces and @: X — Y be an FE-closed mapping. Assume that @ is not
weakly FE-closed. Then there exists a point ¥ in Y and a point p in
0,7 (y) — Cl;.x» ' (y). By Lemma 1.4, there exists an E-closed subset
A of B;X such that pelnt A and ANCl, 27 (y) = @. Let M=
AN X. Then M is an E-closed subset of X, and hence @[M] is closed
in Y. Now MnNo*(y) = @, hence y¢®[M]. On the other hand,
pelnt ASClyy Int A =Clyx [Int AN X] S Clyx [AN X] = Clyyx M,
hence y = @4(p) € 0;[Cl;,x M] = Cly,, @[ M] = Cl,, P[M]. This implies
that ye Cl; ,P[M] N Y = Cl; [M] = ¢[M] which is a contradiction.
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2. HE-perfect mappings. The consideration of FE-perfect map-
pings is motivated by the following obvious results.

PROPOSITION 2.1. Let X, Y be E-completely regular spaces. If Y
is E-compact and if there exists an FE-perfect mapping from X onto
Y, then X is E-compact.

For a space E we shall let €(#) (R(F)) denote the class of all
E-completely regular (respectively, E-compact) spaces. The following
theorem is due to Mréwka [9; 4.1].

THEOREM 2.2. Let E,, E, be two spaces with C(E) = C(E,).
Then S(E,) S K(B,) iff B, X Cexi Br, X for each XeC(E), ie., there
exists a homeomorphism h from Bz X into By X such that h(p) = p
for each p in X.

In the following we shall always assume that E,, E, be spaces
with €(E) = €(E,) and K(E) < K(F,). We are ready to show the
following

THEOREM 2.3. Let X, Y be two E.-completely regular spaces,
P: X — Y a weakly E\-closed mapping. Then ¢ is E,-perfect iff 7'(y)
18 closed in Bz X for each y in Y.

Furthermore, if Y is E,-compact, then ¢ is E,-perfect iff X is
E.-compact.

Proof. Necessity. Since @, [5:X — X] & B, Y — Y, for each y
in Y, we have ¢7'(y) = @,,7'(y) which is closed in g, X.

Sufficiency. To show that @[5, X — X| S £, Y — Y, it suffices
to show that for any ze 5, X, if @,,(2)€ Y, thenz¢ X. Solet @,(2) =
ye Y. Since @ is weakly E,-closed, we have

FAS @Ez_l(y) = @Elvl(y) n /QIJH;X = C'lﬁElX@ﬁl(y) n BEZX
=CL, 2y =9"( < X.

Now assume that Y is E,-compact. If @ is FE,-perfect, by Pro-
position 2.1, X is E,-compact. Conversely, if X is E,-compact, then
Br,X = X. Thus, Cl;, »#7(y) = Cly¢7'(y) = ¢7'(y) for each y in Y.
Hence @7'(y) is closed in B, X for each y in Y. This shows that ¢
is E,-perfect.

Before we give applications of Thecrem 2.3, we first show the
following

LEMMA 2.4. Let X, Y be two E-completely regular spaces, p: X— Y
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a mapping and y an arbitrary point in Y. If ¢7'(y) is E-compact
and E-embedded in X, then @7'(y) is closed in B;X.

Proof. Since 97'(y) is E-compact, 8;? (y) = #7'(y). Consequently,
it suffices to show that Cl, 97 (y) = 8:#'(¥). First, Cl;_»?7'(y), being
a closed subset of the E-compact space 5;X, is F-compact. Also, since
®7'(y) is E-embedded in X, it is also H-embedded in g,X, hence it is
E-embedded in Cl; »'(y). Thus, by Theorem 4.14 (b) of [9],
Clyx P (¥) = BxP™'(W)-

As an immediate consequence of Theorem 2.3 and Lemma 2.4 we
obtain

THEOREM 2.5. Let X, Y be two E,-completely regular spaces,
®: X — Y a weakly E.-closed mapping. If ¢ '(y) is H,-compact and
E-embedded in X for each y im Y, then @ is E,-perfect.

We now turn to the R-compact (realcompact) case. Throughout
the remainder of this section spaces are assumed to be Hausdorff and
completely regular.

Let £, =1 and E, = R in Theorems 2.3 and 2.5, we obtain

COROLLARY 2.6. Let ¢: X— Y be a WZ-mapping. Then we have

(a) @ is R-perfect iff  (y) is closed in the Hewitt realcom-
pactification vX of X for each y in Y.

(b) LetY be R-compact. Then ® is R-perfect iff X 1s R-compact.

(¢) If 7' (y) ts R-compact and R-embedded in X for each y in
Y, then @ is R-perfect.

A subset X, of a space X is said to be z-embedded in X provided
that for every zero-set Z in X, there exists a zero-set Z’ in X such
that Z = 2'N X,, and X, is said to be R*-embedded in X provided
that every bounded continucus real-valued function on X, admits a
continuous real-valued extension to X. It is easy to show that every
R-embedded subset of X is R*-embedded in X and every R*-embedded
subset in X is z-embedded in X. Conversely, it was shown in [5]
that every z-embedded subset X, of X which is completely separated
from every zero-set disjoint from it is R-embedded. Furthermore, it
was shown in [6] that every Lindelof space X, in X is z-embedded
in X. We have the following

LEMMA 2.7. Let @: X — Y be a Z-mapping, y an arbitrary point
of Y. If 7'(y) is z-embedded in X, then ¢7'(y) is R-embedded in X.

Proof. It suffices to show that @7 '(y) is completely separated
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from every zero-set disjoint from it. Let Z be such a zero-set. Then
y¢& P[Z] and @[Z] is closed in Y. Hence there exists an fe C(Y, R)
such that f(y) =0 and f[®[Z]] = 1. Therefore, fope C(X, R) and
(feP)Z] =1, (fop)lP~(y)] = 0.

With the above information the following corollary is easily
obtained.

COROLLARY 2.8. Let ¢: X— Y be a Z-mapping. If onve of the
following conditions holds, then @ is R-perfect.

(a) 97(y) s R-compact and z-embedded in X for each y in Y.

(b) ®7(y) is R-compact and R*-embedded in X for each y in Y.

(¢) X is normal and 9 (y) is R-compact for each y in Y.

(d) o (y) s Lindeldf for each y in Y.

REMARK. It should be pointed out that somewhat more restricted
forms of Corollary 2.8 can be found in [1], [2] and [7]. In particular,
(a) can be found in [1], (b) in [7], (¢) in [1], [7] and (d) in [1] and [2].

3. Hereditarily F-compact spaces. In this section we give sev-
eral characterizations of certain classes of hereditarily FE-compact
spaces. As by-products of the characterizations, sufficient conditions
for the preservation of inverse images of hereditarily E-compact spaces
are derived. The space E in this section will be assumed to have
a continuous binary operation § and two fixed distinet points ¢, and e,
satisfying the following conditions:

(i) efe, = e, ege, = e for each e in E.

(ii) For every closed subset A of E"(n is a finite positive in-
teger) and every point p in E" — A, there exists an fe C(E", E) such
that f[A] = ¢, and f(p) = e,.

(iii) For every two disjoint closed subsets A, B of E, there exists
a ge C(E, E) such that g[A] = ¢, and ¢[B] = e,.

It is easy to see that a space E which satisfies (ii) (iii) is re-
gular (respectively, normal).

In the sequel all spaces are assumed to be E-completely regular.
For convenience we state two lemmas from [10] which are needed for
the proof of Theorem 3.3. We note that conditions (i), (i) and (iii)
of the space E are essential for the proof of these lemmas.

LemMmA 3.1. In an E-completely regular space, the union of a
compact subspace with an E-compact subspace is E-compact.

LEmMMA 3.2. If X is an E-completely regular space which is the
union of finitely many E-compact subspaces, each of which s E-
embedded in X except at most one, then X is E-compact.
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We are now ready to prove the main theorem of this section.

THEOREM 3.8. The following conditions on an E-completely re-
gular space Y are equivalent.

(1) Y is hereditarily E-compact.

(2) Y — {y} is E-compact for each y in Y.

(3) For every space X, if there exists a mapping ®: X — Y such
that ¢ '(y) is compact for each y in Y, then X is E-compact.

(4) For every space X, if there exists a ome-to-ome mapping
o: X— Y, then X 1s E-compact.

(5) For every space X, if there exists a mapping : X— Y
such that P (y) can be expressed as the union of finitely many E-com-
pact, E-embedded subspaces of X for each y in Y, then X is E-compact.

(6) For every space X, if there exists a mapping P: X — Y such
that 97 '(y) ts an E-compact, E-embedded subspace of X for each y in
Y, then X is E-compact.

Proof. It is obvious that (1) implies (2), (8) implies (4) and (5)
implies (6).

(2) implies (3). Let X and ¢ satisfy the assumptions of (3).
It follows from (2) and Lemma 3.1 that Y is E-compact. Hence @
admits a continuous extension @;: 8, X — Y. Now consider any point
y in Y. By 4.9 of [9], the set X, =@, '[Y — {y}] is E-compact,
hence by Lemma 3.1 again, the set X, U ® '(y) is also E-compact.
Since X< X, U9 (y) E B:X, we have X, U P (y) = 5:X. In other
words, @, maps no point of 3, X — X to y. As this holds for every
y in Y, we have ;X — X = @. This shows that X is E-compact.

(4) implies (1). Let F be any subspace of Y. Enlarge the
topology of Y by making both F and Y — F open. The new space
X thus defined is E-completely regular and the relative topology on
F is the same in X as in Y. Since the identity function from X onto
Y is continuous, (4) implies that X is F-compact. Therefore F, which
is a closed subset of X, is also E-compact.

(2) implies (5). This is analogous to the proof of (2) implies
(8). Here instead of using Lemma 3.1, we apply Lemma 3.2 to show
that X, U ¢(y) is E-compact.

(6) implies (4). If @ is a one-to-one mapping, then for each y
in Y, 7(y), which is a singleton, is clearly E-compact and E-embedded
in X.

As an immediate consequence of Theorem 3.3, we have

COROLLARY 3.4. Let Y be a hereditarily E-compact space. If
there exists a mapping ®: X — Y which satisfies one of the following
conditions, then X is hereditarily E-compact.
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(1) For each y in Y, P7'(y) is finite.

(2) @ is one-to-one.

(8) For each yin Y, p7'(y) can be expressed as follows: @' (y) =
F,U---UPF, (nis a finite positive integer) where F; is hereditarily
E-compact and each subspace of F; is E-embedded in X for 1 =1, «+«, n.

(4) For each y in Y, P~ '(y) is hereditarily E-compact and each
subspace of P7'(y) is E-embedded in X.

REMARK. It is obvious that the space R and N (N denotes the
discrete space of nonnegative integers) satisfy conditions (i), (ii) and
(iii). Therefore, all results in this section hold true for hereditarily
R-compact and hereditarily N-compact spaces. In fact, for F = R,
the equivalence of (1), (2), (3) and (4) of Theorem 3.3 was proved by
Gillman and Jerison [4, p. 122]; the equivalence of (1) and (6) was
proved by Blair [1, 8.1]; Corollary 3.4(2) was proved by Shirota [11,
Theorem 6] and Corollary 8.4(4) was proved by Blair [1, 3.2]. For
E = N, Corollary 3.4(2) was proved by Mréwka [8, p. 599].

To see that our results in this section are applicable to other
classes of hereditarily E-compact spaces, we state the following

THEOREM 3.5. All results in this section hold true if E is an
arbitrary O-dimensional chain.

This theorem follows immediately from the following lemmas
whose proofs can be found in [10].

LemMA 3.6, Every 0-dimensional chain which has first and last
elements satisfies conditions (i), (il) and (iii) of the space E.

LemMA 3.7. Let X, be an E-embedded subspace of a spce X, and
B’ be a space homeomorphic to a subspace of E™ for some cardinal
m. If E' 1s a retract of E™, then X, ts E’-embedded in X.

LEMMA 3.8. For every O0-dimensional chain E, there exists a
0-dimensional chatn E' which has first and last elements such that

(1) &(E) = K(E),

(2) E is a retract of E* (hence every E-embedded subspace of
a space X 18 E’-embedded in X).
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