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Throughout this paper, the following notation will be
adopted. (Ω9 Sϊ, P) will be a probability space with 93 a sub
afield of Si. H will denote a subset of Ω not in Si and SΓ
will be the σ-field generated by SI and H. Pe will be a
simple extension of P to Si' if Pe is a probability measure on
SI' with Pe I a = P.

The ability to extend the regularity of the conditional
probability P58 to regularity of Pf has been explored earlier
for canonical extensions of measures. The main results of
this paper are:

(a) If Pf is regular for some canonical extension Pc of
P to SI', then Pf is regular for any simple extension Pe of
P to SI'.

(b) For some choice of (£, Si, P), 93 and H, P58 is regu-
lar but for no Pe is Pf regular. This will essentially extend
the Dicudonnέ example,

Our notation regarding (regular) conditional probabilities will be
consistent with [1].

For extendability see [4]. The example for (b) occurs in [2].

PROPOSITION 1. Any simple extension Pe can be expressed as the
sum of a canonical extension of P plus a finite signed measure on
SI. (Since the construction is carried out in a unique manner, this
decomposition of Pe will be called the canonical decomposition of Pe.)

Proof. As in [1], let if be a set which extends P canonically to
SI'. For any A' e SI' with A' = AJtί + A2H

C for some A, and A2 in SI
write

P.{A') = P(A'KC) + PeiAHK) + Pe{A2H
cK) .

It may be supposed that P{K) Φ 0. Thus, let aΩ = Pe(HK)/P(K)
and define a set function ε on SI such that for every A e SI

e(A) - Pe(AHK) - aΩP{AK) .

It is immediate that ε is a finite signed measure. It also follows
that for any A e SI

Pe{AHcK) - β0P(AK) - e(A)
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where βQ = 1 — aΩ inasmuch as it can be written that

P(A) = Pe(A) = Pe(AH + AHC) =

P(AKC) + aΩP(AK) + e(A) + Pe(AHcK) .

Thus, for A! e W

Pe(Af) = P{A'Kΰ) +

+ βΩP(A2K) - e(A2) .

(Let the sum of the underlined measures be called the canonical part
of P..)

It is clear that the extension, Pe, of Proposition 1 is canonical if
and only if the signed measure ε is identically zero.

LEMMA 2. The signed measure ε is absolutely continuous with
respect to P.

Proof. Let B e SI be a positive set for ε according to its Jordan
decomposition and let 4 e S l with P(A) = 0. Then,

(2.1) Pe(ABHK) ^ P(ABK) ^ P(A) = 0

and so ε(AB) = 0. If C( = BC) is a negative set for ε then it follows
that ε(AC) = 0 where one merely inserts C for B in (2.1). Hence
e < P.

LEMMA 3. If ί20e5l with P(Q0) = 1 then e(Ω0) = 0.

Proof. Immediate.

The following lemma is needed before the main result can be
presented.

LEMMA 4. Let (β, 21, P) be a probability space with S3 c 21. Let
Po be another measure on 21 with P = Po on 33 and P < Po. Suppose
P<? is regular. Then, P23 is regular.

Proof. Let po( , β 135) be a version of Po

s such that po(a),
is a measure (Po U a.e.) Also, let X— dP/dPQ where for all A

P(A) =

Hence, define

(4.1) h(ω, A) = [ X(ω')po(ω, dωr | SB) .
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From (4 1) it is immediate that h(*,A) is 33-measurable for every
A 6 SI and for fixed ω e Ω, h(ω, ) is a measure on St. It remains to
show that for any Be33

( h(ω, A)P(dω) = P(AB) .
JB

To show this, begin by establishing that

Xe Lx(β, §1, po(ω, - | SB)) Po U a.e.

This follows at once by observing that

ί X(ω')p(ω, dω'\ϊ&) = (E*X)(ω)

and

( (E*X)(ω)P0(dω) = ( X(ω)P0(dω) = 1 .
JΩ JΩ

Next, write

X - lim Xn where -X* = Σ ζfcf»(yAfcfn) where

ζk,n is a real constant, (ΨAk,n) is the characteristic function of Ak,n e SI
and {-X»}»̂ i is an increasing sequence.

Finally, since X G L^Ω, SI, po(^, | S3)) Po 18 a.e., the monotone con-
vergence theorem can be used on the following chain of equalities to
give the desired result:

h(ω', A)P(dω') = [ I ί X(ω)po(ω', dω \ 93)} P{dωf)

- ( {lim ΣC*. P o « Λ..A I SB)} P(dα>')

= lim {ί Σ C... p.(ω', AAk,n \ S3)} P(Λo')

(since P = Po on 33)

= lim {( Σ C*, P o « AA,,% | S3)}

= lim {ί Σ Un{ΨAk,n) (ω)Pβ(eto)}

= ( X(ω)P0(dcy) = P(AB) .

Lemma 4 gives immediately
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THEOREM 5. Let (β, 3t, P), 33 c 21, and 2t' be given. Let Pe be
any simple extension of P to SI'. Let P® be regular. A sufficient
condition that Pf be regular is that Pf be regular where Pc is the
canonical part of Pe. (Let K be the set which extends P canonically
to 21' as in [1].)

Proof. It is immediate that Pc | 8 = P = Pe | 8 . Thus the proof
will be complete by Lemma 4 if it can be shown that Pe < Pc. To
do so, suppose A'eW with A' = AJI+ A2H

C and A^eSl, i = 1, 2.
If Pe{A') = 0, it follows that P ^ J B Γ ) - P(A2iQ = 0. Thus

e{AλK) = ε(A2iί) - 0

by Lemma 2. But, by Proposition 1 it follows that e(A) — e(AK)
for all A e Si; hence ε(Λ) = e(Λ) = 0 and thus Pe{A') = 0.

COROLLARY 6. Ψϊtλ ίfee notation of Theorem 5, assume Pf is
regular with 0 < ocΩ < 1. Lβί Pβ, δe α ί̂/ ô feer canonical extension
of P to SI', £feeπ Pc^ is regular.

Proof. Pβ, < Pc and the proof is complete by Lemma 4.

The representation of an arbitrary simple extension as constructed
in Proposition 1 helps establish the following interesting

PROPOSITION 7. Let (Ω, St, P) ί>e given with % countably generated
and {ω}eSt for all ωeΩ. Suppose i ϊ£2t with P*(H) = 0
P*(H) = 1. Then there exists no simple extension Pe of P to SI'
0 (2ί, iϊ) ŝ c/̂  ίλaί Pe

a is regular.

Proof. With if so chosen, it follows that the set iΓ associated
with the canonical part of Pe has P-measure one.

By Proposition 1 write

P.(A') = aQP(AJt) + e(AJ + βΩP(A2K) - e(A2)

for any A! e St' with A' e Axiϊ + A 2 # c and Ai e SI, i = 1, 2. It may
be assumed that 0 < a^ < 1; otherwise, Pe would be canonical (see
[1]) and the result would follow directly as in [3], p. 210.

Suppose there exists a version of P", pβ( , |2l), such that
pe(ω, I SI) is a measure on SI'. Define

.Kf f 130 =

It follows that P(B) < 1, otherwise write
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0 = ( pe(ω,H\W)Pe(dco) = Pe(BH) = aΩP{BK) + e(B)
B

= aΩP{B) + e(B) = aΩ ,

where P(B) = 1 and e(B) — 0 by Lemma 3, and get aQ = 0, a con-
tradiction.

Define a set E where E is the set of points ω for which it is
not true that pe(ω, D\VL) = (ψD)(ω) identically for all DeSi (where
ψD is the characteristic function of D). Since §1 is countably generated,
P(E) = 0 (see [3, p. 210]).

It then follows that (E U B)c c H. Suppose otherwise; that is,
ω e (E U -B)c and ω 6 Hc and get

p . K {α>} U H12C) - p.(ω, {ω} | SQ + ft(ω,

a contradiction.
But P((# U B)c) > 0 and (J57 \jB)cdH. This contradicts con-

struction of H and so P* cannot be regular for any simple extension
of P to ST.
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