Pacific Journal of Mathematics

INTEGRAL OPERATORS ON \mathcal{L}_p -SPACES

DANIEL RALPH LEWIS

Vol. 46, No. 2

December 1973

INTEGRAL OPERATORS ON *L*_p-SPACES

D. R. LEWIS

It is shown that the complemented subspaces of $L^{p}(\mu)$ spaces are isomorphically and isometrically characterized by the behavior of the integral operators defined on such spaces. If the integral operators from E to any F are exactly those operators naturally inducing continuous maps from $l^{q} \otimes E$ to $l^{q} \otimes F$ (where $p^{-1} + q^{-1} = 1$), then E is a \mathscr{L}_{p} -space or a \mathscr{L}_{2} -space. Further, if the integral norm always coincides with the operator norm of the induced mapping, then E is isometric to an $L^{p}(\mu)$ -space.

Several recent papers ([9], [10], [5], [6]) have been concerned with the isomorphic and isometric characterization of the familiar Banach spaces by means of the behavior of the integral and absolutely summing operators defined on the spaces. Attention has mainly been focused on the \mathscr{L}_{∞} -spaces, although most results have dual statements for \mathscr{L}_1 -spaces. Here we consider a class of operators (first introduced by J. S. Cohen in [1], and called here the *cp*-operators) which can be used to provide both an isometric and isomorphic characterization of the complemented subspaces of $L^p(\mu)$, 1 .

Since this result was proven the author has become aware of the elegant paper of Kwapien [4], in which it is shown that the *cp*-operators (called there the γ_p^* -operators) are exactly those maps of form $\beta \alpha$, where α is *p*-summing and β' is *q*-summing. Thus the isomorphic version of the theorem given here can be proven from [4]. However, the proofs have little in common, and we feel that the technique used below may be of use in other factorization problems.

1. All Banach spaces E, F, G, and H are over the real field. Operator (or map) means continuous linear operator, and by subspace we mean a closed linear subset. A map u from E onto F is called *quotient map* if the induced map from $E/u^{-1}(0)$ onto F is an isometry. The identity map on a space is written 1, and the restriction of a map u to a subspace H is written $u \mid H$.

For $1 \leq p \leq \infty$, l_p^p denotes the product of n copies of the scalar field under the norm $||(a_i)|| = (\sum_{i \leq n} |a_i|^p)^{1/p}$ for $1 \leq p < \infty$, and under $||(a_i)|| = \max_{i \leq n} |a_i|$ for $p = \infty$. The Banach-Mazur distance between isomorphic Banach spaces E and F is $d(E, F) = \inf ||u|| ||u^{-1}||$, where the infimum is taken over all isomorphisms from E onto F. For $1 \leq p \leq \infty$ and $1 \leq \lambda$, a space E is a $\mathscr{L}_{p,i}$ -space if it has the following property: given $G \subset E$ finite dimensional, there is an ndimensional H with $G \subset H \subset E$ and $d(H, l_p^n) \leq \lambda$. The space E is a \mathscr{L}_p -space if it is a $\mathscr{L}_{p,\lambda}$ -space for some $\lambda \geq 1$.

The notation and terminology about topological tensor products is that of [3]. The least and greatest tensor norms are written $| \ |_{\vee}$ and $| \ |_{\wedge}$ respectively, and $E \otimes_{\alpha} F$ is the completion of the algebraic tensor product under the tensor norm α . For $u: E \to F$ and $v: G \to$ $H, u \otimes v$ denotes the map from $E \otimes G$ to $F \otimes H$ which satisfies $(u \otimes v)(x \otimes y) = u(x) \otimes v(y)$. An operator $u: E \to F$ is *integral* if the bilinear form taking (x, y') to $\langle u(x), y' \rangle$ naturally induces an element A of $(E \otimes F')'$, and the *integral norm* of u (written $||u||_{\wedge}$) is ||A||. The space of integral operators from E to F is written $L^{\wedge}(E, F)$.

For $1 , a map <math>u: E \to F$ is a *cp-operator* if $1 \otimes u$ extends to a continuous linear operator from $l^p \bigotimes E$ into $l^p \bigotimes F$, and the *cpnorm* of u (written $||u||_{ep}$) is the operator norm of $1 \otimes u$. As mentioned above, this class of operators was introduced by J. S. Cohen in [1]. We need the results of [1] that $C_p(E, F)$, the space of *cp*-operators from E to F, is a Banach space under $|| \quad ||_{ep}$ and is a normed two sided ideal in the generalized sense. Cohen has also shown that $||u|| \leq$ $||u||_{ep}$ for each *cp*-operator u, and that $||u||_{\wedge} \leq \lambda ||\lambda||_{ep}$ if the domain of u is $\mathcal{L}_{q,\lambda}$.

2. Throughout the remainder of this paper 1 and <math>q = p/(p-1).

THEOREM. For $u \in L(E, F)$ and $b \ge 1$, the following are equivalent:

(1) For every Banach space G and $v \in C_q(F, G)$, vu is integral and $||vu||_{\wedge} \leq b ||v||_{\circ q}$.

(2) There is a measure μ and operators $\alpha \in L(E, L^{p}(\mu)), \beta \in L(L^{p}(\mu), F'')$ such that $||\alpha|| ||\beta|| \leq b$ and $\beta \alpha = ju$, where j is the canonical embedding of F into F''.

Proof. The implication $(2) \Rightarrow (1)$ follows directly from the result of Cohen cited above.

In proving that (1) implies (2), it is possible to reduce to the case in which E is finite dimensional by making the following two observations.

(a) If u satisfies (1) and $H \subset E$ is a finite dimensional subspace, then $u \mid H$ satisfies (1).

(b) Conclusion (2) holds if, whenever $H \subset E$ is finite dimensional and $\varepsilon > 0$, $u \mid H = \beta \alpha$, for some $\alpha \in L(H, l^p)$, $\beta \in L(l^p, F)$ with $||\alpha|| ||\beta|| \leq (1 + \varepsilon)b$.

In fact, (a) follows easily from the ideal structure of the cq-operators, and (b) from an inspection of the proofs of Proposition 7.1

and Theorem 7.1 of [7].

It is therefore possible to assume in the remainder of the proof that E is finite dimensional, and it is necessary to establish only that the statement in (b) holds.

For $\alpha \in E' \bigotimes l^p$ and $\beta \in l^q \bigotimes F$, the contraction of (α, β) is the element of $E' \bigotimes F$ defined by Ctr $(\alpha, \beta) = (1 \bigotimes \beta)(\alpha)$, where β is considered as an operator from l^p to F. It is easily seen that contraction is a bilinear mapping from $(E' \bigotimes l^p) \times (l^q \bigotimes F)$ onto $E' \bigotimes F$ of norm at most one, and that the operator from E to F defined by Ctr (α, β) is the composition of the operators defined by α and β . By the universal mapping property for the projective tensor product, contraction extends to a norm one linear operator from $(E' \bigotimes l^p) \bigotimes (l^q \bigotimes F)$ onto $E' \bigotimes F$. Define a norm $| \cdot |$ on $E' \otimes F$ by setting

$$|w| = \inf \{ |\varphi|_{\wedge} : w = \operatorname{Ctr} (\varphi) \}.$$

Then | | is a crossnorm on $E' \otimes F$ under which this space is complete, and further contraction is now a quotient map onto $E' \bigotimes F$ (we will write $E' \bigotimes F$ for $E' \otimes F$ under | |).

For $A \in (E' \otimes F)'$ let v be the map from F to E defined by $\langle v(y), x' \rangle = \langle x' \otimes y, A \rangle$. It follows that $v \in C_q(F, E)$ and that $||v||_{eq} = ||A||$; in fact, the adjoint of the contraction map is an isometric embedding of $(E' \otimes F)'$ into the dual of $(E' \otimes l^p) \otimes (l^q \otimes F)$, which by [2] may be naturally identified as

$$\begin{array}{l} ((E'\mathop{\check{\otimes}} l^p) \mathop{\hat{\otimes}} (l^q \mathop{\check{\otimes}} F))' = B(E'\mathop{\check{\otimes}} l^p, l^q \mathop{\check{\otimes}} F) \\ = L(l^q \mathop{\check{\otimes}} F, (E'\mathop{\check{\otimes}} l^p)') \\ = L(l^q \mathop{\check{\otimes}} F, l^q \mathop{\hat{\otimes}} E) \end{array}$$

Tracing through all the identifications involved shows that $(Ctr)'(A) = 1 \otimes v$, and so the claim is established.

The next claim is that the operator $1 \otimes u$ from $E' \otimes E$ into $E' \otimes F$ has norm at most b, where b is the constant occurring in the statement (1) of the the theorem. To this end consider the adjoint of $1 \otimes u$. By preceding paragraph $(E' \otimes F') \subset C_q(F, E)$ isometrically, and $(E' \otimes E)' = L^{\wedge}(E, E)$ isometrically by [2]. Further, after mrking these two identifications, $(1 \otimes u)'$ is the restriction of the map from $C_q(F, E)$ to $L^{\wedge}(E, E)$ taking v to vu, which has norm $\leq b$ by (1).

By the preceding paragraph the tensor $w = (1 \otimes u) (1_E)$ has norm at most b in $E' \otimes F$, and clearly u is the operator from E to Fdefined by w. To complete the proof is sufficient to produce a pair (α, β) in $(E' \otimes l^p) \times (l^q \otimes F)$ so that $w = \operatorname{Ctr} (\alpha, \beta)$ and $|\alpha|_{\vee} |\beta|_{\vee} \leq (1 + \varepsilon)b$. To do the former, we need only produce a pair (α, β) so that u is the operator defined by $\operatorname{Ctr} (\alpha, \beta)$ (since $| \cdot |_{\vee}$ and $| \cdot |$ are equivalent norms on $E' \otimes F = L(E, F)$, the inclusion of $E' \otimes F$ into $E' \otimes F$ is one-to-one).

Since $|w| \leq b$ and Ctr is a quotient map, there is a φ in $(E' \otimes l^p) \otimes (l^q \otimes F)$ such that $w = \operatorname{Ctr}(\varphi)$ and $|\varphi|_{\wedge} < (1 + \varepsilon)b$. By [2] φ has a representation

$$\varphi = \sum_{i \ge 1} \lambda_i \alpha_i \bigotimes \beta_i$$

where (λ_i) is a positive sequence in l^1 , $\alpha_i \in E' \bigotimes l^p$, $\beta_i \in l^q \bigotimes F ||\alpha_i|| \leq 1$, $||\beta_i|| \leq 1$ and $||(\lambda_i)|| < (1 + \varepsilon)b$.

Let $(\Gamma_i)_{i\geq 1}$ be a partition of the natural numbers with each Γ_i countably infinite, U_i be the natural embedding of $l^p(\Gamma_i)$ into l^p , V_i the natural projection of l^p onto $l^p(\Gamma_i)$, $S_i: l^p \to l^p(\Gamma_i)$ any onto isometry and $T_i = (S'_i)^{-1}$. We claim that the series

$$\sum_{i\geq 1}\lambda_i^{1/p}(\mathbf{1}\otimes U_iS_i)(\alpha_i)$$

is unconditionally Cauchy in $E' \bigotimes l^p$, and that its sum, α , has norm at most $(\sum_{i \ge 1} \lambda_i)^{1/p}$. To see this, let *I* be any finite set of indices, and consider the unordered sum over *I* as an operator from *E* to l^p . For any $x \in E$, the terms of the unordered sum evaluated at *x* are disjointly supported in l^p and so

$$egin{aligned} &||\sum\limits_{i\in I}\lambda_i^{\scriptscriptstyle 1/p}(\mathbf{1}\otimes U_iS_i)(lpha_i)(x)||^p = \sum\limits_{i\in I}\lambda_i\;||(\mathbf{1}\otimes U_iS_i)(lpha_i)(x)||^p\ &\leq ||x||^p\sum\limits_{i\in I}\lambda_i\;. \end{aligned}$$

Taking the supremum over the closed unit ball of E shows that the norm of the unordered sum over I is at most $(\sum_{i \in I} \lambda_i)^{1/p}$, which establishes the claim. Similarly, the series

$$\sum_{i\geq 1}\lambda_i^{1/q}(V_i'T_i\otimes 1)(\beta_i)$$

converges unconditionally in $l^q \bigotimes F$ to an element β of norm at most $(\sum_i \lambda_i)^{1/q}$. Clearly $|\alpha|_{\vee} |\beta|_{\vee} \leq (1 + \varepsilon)b$. For τ a tensor, write $op(\tau)$ for the operator defined by τ . Then, for each *i* and *k*,

$$op[\operatorname{Ctr} ((1 \otimes U_i S_i)(\alpha_i), (V'_k T_k \otimes 1)(\beta_k))] = op[(V'_k T_k \otimes 1)(\beta_k)] op[(1 \otimes U_i S_i)(\alpha_i)] = op(\beta_k)(V'_k T_k)'(U_i S_i)op(\alpha_i) = op(\beta_k)(T'_k V_k U_i S_i)op(\alpha_i) = op(\beta_k)(\delta_{ik} 1_{l^p})op(\alpha_i) = \delta_{ik}op(\beta_k)op(\alpha_i) = \delta_{ik}op[\operatorname{Ctr} (\alpha_i, \beta_k)]$$

and so, by the continuity of the maps Ctr and op,

$$op[\operatorname{Ctr} (\alpha, \beta)] = \sum_{i,k} \lambda_i^{1/p} \lambda_k^{1/q} \delta_{ik} op[\operatorname{Ctr} (\alpha_i, \beta_k)] \\ = \sum_i \lambda_i op[\operatorname{Ctr} (\alpha_i, \beta_i)] \\ = op[\operatorname{Ctr} (\sum_i \lambda_i \alpha_i \otimes \beta_i)] \\ = u.$$

This completes the proof.

As corollaries to the proof we have the following.

COROLLARY 1. If every cq-operator on E is integral, then E is a \mathcal{L}_2 -space or \mathcal{L}_p -space.

COROLLARY 2. If every cq-operator on E is integral with equality of the integral norm and cq-norm, then E is isometric to some space $L^{p}(\mu)$.

Proof. Both corollaries follow by applying the theorem to the identity operator on E. The existence of a constant b satisfying condition (1) of the theorem in the situation of Corollary 1 can easily be shown by contradiction. In either case, the injection of E into E'' factors

 $E \xrightarrow{\alpha} L^{p}(\mu) \xrightarrow{\beta} E''$

with $||\alpha|| ||\beta|| \leq b$, so that E is reflexive and isomorphic to a complemented subspace of $L^{p}(\mu)$. In general the result of Lindenstrauss and Rosenthal ([8]) shows that E is a \mathcal{L}_{p} -space or a \mathcal{L}_{2} -space. If b = 1, the theorem of Tzafriti [11] shows that E is isometric to some space $L^{p}(\mu)$.

COROLLARY 3. If every c2-operator on E is integral, then E is isomorphic to a Hilbert space.

Proof. It is well-known that a complemented subspace of a Hilbert space is itself a Hilbert space.

COROLLARY 4. If $1 < s, t < \infty$ and s, t and 2 are distinct, then there are cs-operators which are not ct-operators.

Proof. By [8] it is impossible that $l^{t'}$ be isomorphic to a complemented subspace of $L^{s'}(\mu)$, where s' and t' are the conjugates of s and t, so by the theorem, $C_s(l^{t'}, F) \not\subset L^{\wedge}(l^{t'}, F)$ for some F. By Cohen's result quoted at the beginning of the paper, $L^{\wedge}(l^{t'}, F) = C_t(l^{t'}, F)$.

References

1. J. S. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Ph. D. dissertation, University of Maryland, 1969.

2. A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Memoirs Amer. Math. Soc., 16 (1955).

3. _____, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem. Sao Paulo, **8** (1956), 1-79.

4. S. Kwapien, On operators factorizable through L_p -spaces, preprint.

5. D. R. Lewis, Spaces on which each absolutely summing map is nuclear, Proc. Amer. Math. Soc., **31** (1972), 195-198.

6. D. R. Lewis and C. P. Stegall, Banach spaces whose duals are isomorphic to $l_1(\Gamma)$, J. Functional Analysis, **12** (1973), 177-187.

7. J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in \mathcal{L}_p spaces and their applications, Studia Math., **29** (1968), 275-326.

8. J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math., 7 (1969), 325-349.

9. J. R. Retherford and C. P. Stegall, Fully nuclear and completely nuclear operators with applications to \mathcal{L}_1 and \mathcal{L}_{∞} spaces, Trans. Amer. Math. Soc., **163** (1972), 457-492.

10. C. P. Stegall, Characterizations of Banach spaces whose duals are L_1 spaces, Israel J. Math., **11** (1972), 299-308.

11. L. Tzafriti, Remarks on contractive projections in L_p -spaces, Israel J. Math., 7 (1969). 9-15.

Received April 25, 1972. This note contains the substance of a talk given at the LSU conference on \mathcal{L}_{p} -spaces and nuclear spaces, April, 1972.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

Current address: University of Florida

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

D. GILBARG AND J. MILGRAM

Stanford University Stanford, California 94305 J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH

B. H. NEUMANN

NN F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

K. YOSHIDA

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$48.00 a year (6 Vols., 12 issues). Special rate: \$24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

R. A. BEAUMONT University of Washington Seattle, Washington 98105

Pacific Journal of Mathematics Vol. 46, No. 2 December, 1973

Christopher Allday, Rational Whitehead products and a spectral sequence of	313
Quillen	515
James Edward Arnold, Jr., <i>Attaching Hurewicz fibrations with fiber</i> preserving maps	325
Catherine Bandle and Moshe Marcus, Radial averaging transformations with	
various metrics	337
David Wilmot Barnette, A proof of the lower bound conjecture for convex	
polytopes	349
Louis Harvey Blake, Simple extensions of measures and the preservation of	
regularity of conditional probabilities	355
James W. Cannon, New proofs of Bing's approximation theorems for	
surfaces	361
C. D. Feustel and Robert John Gregorac, On realizing HNN groups in	
3-manifolds	381
Theodore William Gamelin, <i>Iversen's theorem and fiber algebras</i>	389
Daniel H. Gottlieb, <i>The total space of universal fibrations</i>	415
Yoshimitsu Hasegawa, Integrability theorems for power series expansions of	
two variables	419
Dean Robert Hickerson, Length of period simple continued fraction	
expansion of \sqrt{d}	429
Harbert Moyer Kamowitz The greating of an domorphisms of the diag	
Herbert Meyer Kamowitz, <i>The spectra of endomorphisms of the disc</i>	
algebra	433
	433 441
algebra	
algebra Dong S. Kim, Boundedly holomorphic convex domains	441
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spaces	441 451
$algebra$ Dong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spaces	441 451 457
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornology	441 451 457 467
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structures	441 451 457 467 471
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free rings	441 451 457 467 471 487
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spaces	441 451 457 467 471 487 503
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classes	441 451 457 467 471 487 503 515
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classesH. J. Schmidt, The F-depth of an F-projector	441 451 457 467 471 487 503 515 523
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classesH. J. Schmidt, The F-depth of an F-projectorEdward Silverman, Strong quasi-convexity	441 451 457 467 471 487 503 515 523 537
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classesH. J. Schmidt, The F-depth of an F-projectorEdward Silverman, Strong quasi-convexityBarry Simon, Uniform crossnorms	441 451 457 467 471 487 503 515 523 537 549 555
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classesH. J. Schmidt, The F-depth of an F-projectorEdward Silverman, Strong quasi-convexityBarry Simon, Uniform crossnormsSurjeet Singh, (K E)-domains	441 451 457 467 471 487 503 515 523 537 549 555 561
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classesH. J. Schmidt, The F-depth of an F-projectorEdward Silverman, Strong quasi-convexityBarry Simon, Uniform crossnormsSurjeet Singh, (K E)-domainsTed Joe Suffridge, Starlike and convex maps in Banach spaces	441 451 457 467 471 487 503 515 523 537 549 555 561 575
algebraDong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classesH. J. Schmidt, The F-depth of an F-projectorEdward Silverman, Strong quasi-convexityBarry Simon, Uniform crossnormsSurjeet Singh, (K E)-domains	441 451 457 467 471 487 503 515 523 537 549 555 561
$algebra$ Dong S. Kim, Boundedly holomorphic convex domainsDaniel Ralph Lewis, Integral operators on \mathcal{L}_p -spacesJohn Eldon Mack, Fields of topological spacesV. B. Moscatelli, On a problem of completion in bornologyEllen Elizabeth Reed, Proximity convergence structuresRonald C. Rosier, Dual spaces of certain vector sequence spacesRobert A. Rubin, Absolutely torsion-free ringsLeo Sario and Cecilia Wang, Radial quasiharmonic functionsJames Henry Schmerl, Peano models with many generic classesH. J. Schmidt, The F-depth of an F-projectorEdward Silverman, Strong quasi-convexityBarry Simon, Uniform crossnormsSurjeet Singh, (K E)-domainsTed Joe Suffridge, Starlike and convex maps in Banach spaces	441 451 457 467 471 487 503 515 523 537 549 555 561 575 591