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RADIAL QUASIHARMONIC FUNCTIONS

LeEo SARIO AND CECILIA WANG

A function s on a Riemannian manifold is called quasi-
harmonic if it satisfies 4s = 1, where 4 is the Laplace-Beltrami
operator do + dd. Existence of quasiharmonic functions with
various boundedness properties has thus far been investigated
by means of useful implicit tests. We now ask: Can such
functions be formed by direct construction, in a manner ac-
cessible to computation if need be?

1. We shall present our approach to the problem in the setup
of a Riemannian N-ball

(1) B, = {r < 1|ds}
endowed with the generalized Poincaré metric
(2) ds = Mr)lde|, Mr) = 1 — )%, ac R,

where r=|z|, x= (', - -+, 2"). In [16] we proved that there exist bounded
quasiharmonic functions on B, if and only if ae(—1,1/(N — 2)). We
shall now show that this in turn is necessary and sufficient for the
boundedness of an explicitly constructed function s(r), given in No. 3
below. Thus the boundedness of this single function characterizes the
existence of bounded quasitharmonic fumnctions on B,.

We shall call, for brevity, a function radial if it depends on r
only. A simple consequence of our result is that there exist bounded
radial quasiharmonic functions if and only if there exist bounded
quasiharmonic functions.

We expect that our approach is extendable to other classes of
quasiharmonie¢ and biharmonic functions as well, and to other Rieman-
nian manifolds which are invariant under rotation. In particular,
there exist megative radial quastharmonic functions on every B,.

2. The proof of our main result will be divided into Lemmas
1-6. We start by formulating the equation:

LEMMA 1. A function s(r) satisfies
(3) ds =1

on B, if and only if

(4) S”—{—(N;l *Z(Z;T:iza’l'>8;+(1_~,r2)2a___0.
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Proof. The metric tensor (g;;) is diagonal, with elements
A N NP, e e, NPy,
where ®,, +-+, @y_, are functions of the coordinate angles @', --., 6%,
We set @ = (@, +++ Py_5)'% and have V' g = A"r" ', g"" = A%, and

1 o —
A — - Tr ot
$ VT (V' g97s)

- _ )\J—z[su + (\N; 1 i (N -;2)7\,’ )s’] ,

hence the lemma.
For convenience in later calculation, we rewrite (4) in the form:

(1 — r)s” + r[(N — 1)1 — %)

4[
(4) — 2(N — 2)ar’]s’ + r*(1 — r)** =0.

3. We are ready to give the function s(r) referred to in the
introduction. Here and later > with » < m will mean 0.

LEMMA 2. Egquation (3) is satisfied by the function

(5) s(r) = — 3 bari*?
where

1
6 b = ——
(6) 0= 5

and for 1 > 0,

(7) bi:‘l—ﬁpa“FZ_- (Ijﬁ Di + ¢ s
2N j=1 j=1 k=j+1
with
(8) p; = 21[21 + (N — 2)(2a + 1)] ,
' (2¢ + 2)(2¢ + N)
(9) g = M U — 20 — 2)5° .

(27 + 2)(27 + N)
Proof. Substitution of (5) into (4) gives
- i @ — (@7 + 2)(27 + 1)br¥+* — i‘,o (N — 1)(2¢ + 2)br*+?

+ % [(N —1) + 2(N — 2)a](@i + 2)br¥*™* + »*

+rzg<]ﬂ;-—~—————j_2f_2)¢“:0.
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On changing by unity the summation index in the coefficients of r*+*
we obtain

@1+ 2)@2i + N)ba¥tt = 3 24[20 + (N — 2)@ar + 1)]b,_r®+2
=0 =1
+ 7t + 2(i__j—2;r—2>7_2m: 0.

We equate the coefficient of »* to 0 and have (6). The coefficient
of »*** for ¢ > 0 gives in notation (8), (9)
(10) b; = p;biy + q;
which by induction yields (7).

4, We recall that we are only interested in a e (—1, 1/(IN — 2)),
and we shall at this point introduce the condition a <1/(N — 2). To

estimate b, given by (7), we start with IIp,. Let %, be any integer
such that

N

11) Go=1— a(N—2) —

.

Further conditions on %, will be imposed in the course of our reasoning.

LEMMA 3. For a <1/(N — 2) and © > 1,

(12) ﬁ p; < 'L.o + 1(27,0 + N+ 2 )1—a<N—-2) .

P~ T+ 1\20 4+ N+ 2

Proof. In p,;, consider first the factor

5o 20+ (N—2)@x+1) _ 4 _ 2[1—alN—2)]
: 2 + N 2 + N )

For @ < 1/(N — 2) and 7 > %, we have 0 < §; <1 and

log 5, < — 2Lt ;i“J(FNN_ 21 <.
Therefore
log 11 8; < — 2[1 — a(N — 2)] §”l de
=g+t it 20 + N
and

k3 2’& + N—I—- 2 1—a(N—2)
5, < (——) :
1,0 2+ N+ 2

F=1p+1



518 LEO SARIO AND CECILIA WANG

In view of

7
i . ais
P 1+ 1

the lemma follows.

5. To proceed with the estimation of b, we now utilize also the
condition & > — 1 and impose on 4, the additional requirement

(13) G = 2(a + 1) .

In the sequel ¢ will stand for a positive constant, not always the
same,

LEMMA 4. For ae(—1,1/(N — 2)) and i > i

c (,1:0 + 1 >2(a’+l)
(26 +2)21 + N)\i+1 )

(14) lg:] <

Proof. For j > 1,

0<1-— 2@+t 4
J
and therefore

ig+1

log TI (1- @) < —2@+ D3 %< —2a + 1)"'+1 a

=i+ \ ] Jigr1

This gives

Loj—2a— 2 <i0+1>2“‘+”
AL, J <Gt ’

hence (14).

6. We now come to the main step in estimating b,. It will be
necessary to consider separately the cases a e (—1/N,1/(N — 2)), a =
—1/2, and e« (-1, 0) — {—1/2}.

LEMMA 5. For ac(—1/N,1/(N — 2)), and © > 1, ,

(15) ;] < c( 1 )2“"‘”—2) N d(l‘ya/m—u/zmw—z) . e<i.)2m+2) ,

1 1 %

where ¢, d, e are positive constants.
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Proof. By (7)

i

(16) b; = by, pr+ Z%Hm-ﬂzm
J ip+1 j=ipt+t k=j+1
and by (12)
17 bz ] ; e 1 l—a(N—2) l 2—a(N—2) .
a7 Oj:]i'—oI-Hp <i+1<2i+N+2> <C<i)

In view of (12) and (14) we have

¢ / 1 )2(a+1)
25 +2)@ +N)\j+1
j+1/2‘7+N+2>1~—a(N—2).
T+1\20+ N+ 2

(18)

q; Hpk

E=j+1

For e (—1/N, 1/(N — 2)),
1—aN—-2) <21+ a).
We therefore may and do require of ¢, further that for j > 4,

(2] + N+ 2)1-—-0:(1\7—2) < 21—a(N—2)

(9 + 1)2(1+a)
We obtain
i—-i 3 | 1 1—a(N—2) i—1 1
“o+1 =H | 2z+2<2i+N+2> f=zzo“+12j+N
where
iz 1 = de 1 204+ N—-2
- = —Jog 2 " 2 |
G A N TN 2 8T a4 N

Accordingly, we set on 4, the additional condition that for ¢ > 1,
1 >(II2)[1-‘(X(N——2)]1 2?: + N + 2
= og Lot X T 2 1.,
( 5 ETE TN
Then

4—1

> 45 II »|<ec
k=j+1

J=ip+1

(19)

( 1 >(3/2)—(1/2)U(N-—2)

A bound for the last term in (16) is immediate by (14):
1 2(a+2)
(20) <o)

We combine (16), (17), (19), and (20), and obtain (15).
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7. We are ready to state:

LEMMA 6. For ac(—1,1/(N — 2)), the function s(r) of Lemma
2 48 bounded quasiharmonic.

In faet, for ae(—1/N,1/(N — 2)), all three exponents in (15)
are > 1, and therefore

@) 5] = | S b2 < S 1bi] < o0

The case @ = —1/2 is simple, as all ¢; = 0, and by (8)

C b T s < |y | (B0 T 2 1y
1Bl = By, TL 2 <1y 27 + 2)@2i + N) <c(7;> ’

whence 35 |b;| < oo.
It remains to consider the case ac(—1,0) — {—1/2}. We obtain
at once

2k(2k + N — 2)
2k + 2)(2k + N) ’
f[ P, < (27 + 2)(25 + N)

P <

i+ (2% + 2)(27 + N)
and by (14)
I 1 2(a+1)
il < == : =
4 < GrrmE T (T r)
for 7 > 4,. Therefore
i—1 4 c =1 d:){;
j=%+1 % k=1;'I+1 Pi| < (21 + 2)(21 + N) Sio (¢ + 1)’

where the integral has the value

1

gl = Gk ]

since a = —1/2. As a consequence

22) ]=_o+1 ¢ k=I:‘_I+1 TARS c(%—f“a + d(—i.—f :
Similarly
(23) b;, k=1j+1 0| < c(%)z
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and

1 20+4
24 . Ly
(24) ] <o)
Since all exponents in (22)-(24) are > 1, it follows again by (16) and
(21) that the function s(r) is bounded.

8. We have established our result:

THEOREM. There exist bounded quasiharmonic functions on the
Riemannian ball B, if and only if the function s(r) of Lemma 2 1s
bounded.

In fact, we know that there exist bounded quasiharmonic func-
tions on B, if and only if @ e (-1, 1/(N — 2)) (Sario-Wang [16]). This
together with Lemma 6 gives the theorem.

A simple consequence is perhaps worth stating. Let R be the
family of radial functions, characterized by the dependence on » only.
Denote by Ogzr and O, the classes of Riemannian manifolds which
do not carry bounded radial quasiharmonic funetions, or bounded
quasiharmonic funections, respectively, and set B = {U B.|ac R}.

COROLLARY 1. BN Ogzr = BN Oy

That is, there exist bounded radial quasiharmonic functions on
B, if and only if there exist bounded quasiharmonic functions.

COROLLARY 2. BN Oyyzr # @.

For ae(—1,1/(N — 2)), we have s — sup;, [s|€ QNR. For all «,
it is readily seen that the function

()

0 o (1 _ 0.2)(N——2)a

is radial, negative, and quasiharmonic.
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