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Here we discuss the role of the conductor of a ring exten-
sion vis-a-vis the descent of projectivity and injectivity.
Regarding the former, the first result says that an injective
homomorphism of commutative rings descends projectivity if
it does so modulo the conductor. The cheap version—that
with noetherian hypotheses—of the descent of projectivity by
a finite homomorphism due to Gruson then follows easily. A
carbon copy—with the natural modification—of the descent of
injectivity is also proved.

The statement of the results follows very closely the lines of
similar work of Ferrand ([2]) on flat modules rather than those of
the remarkable [3].

1* Conductor and projectivity* Throughout rings will be com-
mutative with identity element. The price to lift the restriction of
commutativity would be to load the exposition with expressions like
"two-sided ideal", "bi-module", etc., without any real gain, in view
of the fact that for the applications the commutativity is critical.

The main result of this section is, almost word for word, the
projective analogue of [2]. Rather than using the results already
obtained there, at no cost, we will provide complete proofs based on
simple calculations.

THEOREM 1.1. Let h: A —> B be an injective homomorphism of
rings, I an ideal of A and E an A-module. Then E is A-projective
if and only if B ®^ E is B-projective and E/IE is A/I-projective in
the following cases:

(i) I is also a B-ideaL
(ii) I is nilpotent.

Proof, (i) (1) Ύoτt{AjI, E) = 0:
We must show that the natural map I(&AE—*E is injective.

This follows from the commutative diagram

E > E

where the vertical map on the left is the natural identification while
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the lower horizontal map is injective by the 5-flatness of B ®^ E.
(2) Tori(JS, E) = 0:
Let

(*) 0 >G-2-*F >E >0

be exact with F A-free By tensoring it with B we get (from now
on unadorned tensor products are taken over A)

(**) o > Ίoτt(B, E) > B(g) G ^B(g)F > B(g) E > 0 .

As B (x) E is J5-projective, this sequence splits piecemeal; by tensoring
it with B/I over B, we get the exact sequence

0 > B/I®B ToτftB, E)

B®F • B/I®BB®E

which can also be written

0 > Ίoτ?(B, E)/L Torf(£, E) > B/I® G/IG

> B/I® F/IF > B/I® E/IE > 0.

By (1) it follows then that Tori(B, E) = I. Torf(B, E). Let now x e
Torf (JB, E): we can write x — Σ a{ x{ with α̂  e J, α?< 6 Ύorf(B, E) c=—>
B ® G. It follows thus that x lies in the image of G in B ® G But
in the diagram

G > F

I i
-B(x)G >B®F

the right vertical map is injective as A: A —* 5 is injective and F is
A-free We then have x = 0.

(3) (*) splits:
Let 0 be a splitting for (**), i.e., 0(1 (x);?) = 1. On the other

hand, let ψ be a splitting of

0 > G/IG - ^ F/IF > E/IE > 0 .

The projectivity of F yields then a map θ: F-+G such that θj — 1 + #,
with #: G -»JG.

From the product

(1 - (1 <g> θ)(l ®j))(Φ(l®j) - 1) - 0

one gets
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If we restrict the map (1 ® g)φ + (1 ® θ) to F, we get (1 ® g)φ + θ)j = 1
where (1 ® g)φ + θ is actually a map from F into G. This completes
the proof of (i).

(ii) Say Γ = (0) and let I{ = (Γ. B) Π A. Then i? c Ii+ι and Jn =
(0). By passing to Ajln_1 (c—>B/In^ B) we reduce the question, by
induction, to the case P = (0).

(1) TorftA/I, E) = 0:
This can be read off the diagram

> E

IB®AIIEIIE

B®E > B(g)E

where the left vertical map is injective by the ^//-flatness of E/IE
while tho lower horizontal map is injective by the 5-flatness of B (x) E.

( 2 ) (*) splits:
Tensor (*) with A/1 and get φ:F->G such t h a t φj = 1 + g, g: G-*

IG. As g2 = 0, (1 — g)φ provides the desired splitting map.

REMARKS, (a) In (ii) above it is enough that I be T-nilpotent,
for it follows from [3, p. 60] that E is flat and the argument in (ii)
yields a splitting, (b) If A is artinian, with / the radical of A, one
has t h a t any injective homomorphism descends projectivity. (c) With
k a field and A — k[x\, x% i = 1, 2, •], B = k[XiS] the conductor I of
B in A is such that A/1 = k. Thus the inclusion A—>B descends
projectivity.

COROLLARY 1.2. Let A, B be commutative rings under the condi-
tions of (i) above, and let E be an A-rnodule. If 2? (x) E (and resp.
E/IE) is finitely generated over B (resp.over A/1), then E is finitely
generated over A. (Descent of finiteness)

Proof. Pick n large enough such that there is a sequence

An • E > C > 0

such t h a t B (x) C = 0 and C/IC = 0. Then C is A-projective of trace
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ideal, say, J. However the trace of B (g) C is then JB. Since h: A —>
B is injective, this implies C = 0.

THEOREM 1.3. Lei A be a noetherian ring, h\A—*B an injective
homomorphism of rings and B finitely generated as A-module. Let
E be an A-module; if B® E is Biprojective then E is A-projective.

Proof. It follows the path of [2]. Let I be a largest ideal of
A such that E/IE is not A/J-pro jective. If IΦ VI = J, E/JE is
AjJ-projective and B/JB (x) E is also B\Ji?-projective (A/J <=—> i?/J5)
and by Theorem 1.1 we get a contradiction. Thus we may assume
that A is reduced and such that E/LE is A/L-projective for each
ideal L Φ (0). We have the canonical inclusion A-+ A' = n(AjPi), P{

running through the minimal primes. Let B' — Tl(BIPiB)\ then A'(x)E
is A'-projective. However the conductor of A'/A is Φ (0) and thus
by Theorem 1.1 E is A-projective.

Assume then A to be a domain. We may take B = A[y] and also
a domain. Let ayn + + b — 0 be a least degree equation satisfied
by y. Then with z = ay A —> Bo = A[z] -* A[y], Bo is a free extension
of A and hence it is enough to show that Bo® E is J?0-projective.
From the hypothesis on A it follows that for every ideal Mφ (0) of
Bo, M Π A Φ (0) and B0IMB0 (x) E is B0/MB0-^τojective. Also, since
the conductor of B/Bo is nonzero, a final application of Theorem 1.1
yields the desired conclusion.

2* Conductor and injectivity* Now we discuss the injective
analogue of Theorem 1.1. The existence of injective envelopes is
quite essential for the proof.

THEOREM 2.1. Let h:A—>B be an injective homomorphism of
rings, I an ideal of A and E an A-module. Then E is A-injectίve
if and only if Hom^I?, E) is B-injective and HornA(A/1, E) is A/I-
injective in the following cases:

(i) I is also a B-ideal.
(ii) I is nίlpotent.

Proof, (i) ( 1 ) Exti(A/J, E) = 0:
Let

(***) 0 >E-^F-^-+C >0

be exact with F an injective envelope of E. It yields

0 > Horn (A/J, E) > Horn (A/1, F) Horn {All, C)

> Ext1 (All, E) > 0
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(where the lower A's are dropped without risk of confusion). But
Horn (A/I, F) = XF — {xe F, Ix = 0} is the injective envelope of τE as
an A//-module and thus ZC = Ext^A/I, E). We also have the diagram

Horn (A, E) > Horn (I, E) • Ext1 (A//, E) > 0

Horn (B, E) > ΈLomB (I, Horn (B, E)) > 0

with the lower sequence exact by the 5-injectivity of Horn (B, E). It
thus follows that XC = Ext1 (A/I, E) = 0.

( 2 ) E x t 1 ^ , E) = 0:
The sequence

0 > Horn (B, E) > Horn (B, F) > Horn (B, C)

>Extι (B, E) > 0

splits piecemeal as Z?-modules. Applying Hom5 (B/I, —) to it we get

0 > Horn (B/I, E) > Horn (B/I, F) > Rom(B/I, C)

>Ή.omB (B/I, Ext1 (B, E)) • 0 .

Since ZC = 0, jExt1 (B, E) = 0 also. Let a e Horn (B, C); say a(ΐ) = c.
Pick b G F with π(b) — c and choose β: A —> F such that β(l) = b. Let
now φ: B —> F extend β. We claim that πφ = a. For a el, xeF,
a(πφ — a)(χ) = πφ(ax) — a(ax) = 0. Thus I. image (πφ — a) = 0 and
πφ = α as ΣC = 0.

( 3 ) (***)
Consider the exact sequences

0 > Horn (B, E) -^-> Horn (5, F ) -^-> Horn (β, C)

Ί
0 • Horn (A, E) _A^ Horn (A, F) JL+ Horn (A, C) > 0

where η and Θ are onto by the injectivity of F. Let φ be a splitting
for the upper sequence; let ceC and a e Horn (5, C) be such that
0(α) = C that is, α; is such that a(ΐ) = c. Define ψ(c) 6 Horn (A, F)
to be η(φ(a)). We claim that α̂  is well defined and provides a splitting
for the lower sequence. Assume first that a(l) = 0: then /. a(B) = 0
and thus a = 0, and ^ is well defined. Next, we have π(φ(c)) —
π(η(φ(a))) = θ(π'(φ(a))) = c.

(ii) Reduce first to the case P = (0). I t is enough now to show
that Ext1 (A/I, E) = 0 for τΈ is essential in τF and thus 7C = 0 implies
C = 0. Just read this off the commutative diagram
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Horn (A, E) * Horn (I, E) •Ext̂ A/i", E) >Q

(I, iE)

ί
ΈLomAII(IB,τE)

(B, Horn (B, E)) >Hom5 (IB, Horn (B, E)) >0

where the right vertical map is surjective by the A//-injeetivity of

ZE and the lower horizontal map is exact by the J5-injectivity of
Horn (B, E).

COROLLARY 2.2. Let h: A~+B be an injective homomorphism of
rings, I the conductor of B/A. Then if A/I and B are both noetherian
rings and B/I is finitely generated as an A-module, A is noetherian
(and hence B is finitely generated as A-module).

Proof. According to [1, p. 60] it is enough to show that a
direct sum E = 0 Eι of injective A-modules is injective. Clearly
Horn (A/1, 0 E%) is A/I-injective. If / e Horn (B, 0 #<), /(/) c f(A)
and the finite generation of B/I implies that f(B)i ( = projection of f(B)
in Ei) is trivial for almost all i's. Thus Horn (B, 0 Ei) = ̂ Ή.om(B, Et)
and Theorem 2.1 takes over.
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