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In this paper it is shown that any holomorphic mapping
of a domain X over a Stein manifold in a complex Lie
group L can be continued to a holomorphic mapping of the
envelope of holomorphy of X in L.

1. Let M be a complex manifold. A pair (X, ) of a complex
manifold X and a locally biholomorphic mapping « of X in M is cal-
led an open set over M. Moreover, if X is connected, (X, +) is cal-
led a domain over M. Let (X, ) and (X', v") be open sets over M.
A holomorphic mapping A of X in X' with = 4’ o\ is called a
mapping of (X, ) in (X', 4'). Consider domains (X, ) and (X', «)
over M with a mapping A of (X, +) in (X', ') such that each con-
nected component of X’ contains that of MX). Let Y be a com-
plex manifold. Let f be a holomorphic mapping of X in Y. A
holomorphic mapping f’ of X’ in Y with f=jf"oX is called a
holomorphic continuation of f to (A, X’, v'). Let &# be a family of
holomorphic mappings of X in Y. If any holomorphic mapping f of
& has a holomorphic continuation to (A, X', ¥'), (A, X’, ¥') is called
a holomorphic completion of (X, +) with respect to the family &#. A
holomorphic completion (X.., X.-, %.) of (X, ¥) with respet to & is
called an envelope of holomorphy of (X, +) with respect to the family
& if the following conditions are satisfied:

Let (\, X', 4’) be another holomorphic completion of (X, ) with
respect to . There is a mapping @ of (X', ') in (X., ¥.) with
X- = ®@o )\ such that (@, X.,¥.,) is a holomorphic completion of
(X', ') with respect to the family & of holomorphic continuations
to (M, X', ') of all holomorphic mappings of #.

If & is the family of all holomorphic functions in X, the en-
velope of holomorphy of (X, +) with respect to # is called the en-
velope of holomorphy of (X, «). If & consists of only one holomorphic
mapping f of X in Y, the envelope of holomorphy of (X, ) with
respect to the family & is called the open set of holomorphy of f.
Malgrange [5] proved the unique existence of an envelope of holo-
morphy, considering a connected component of the sheaf of all germs
of families of holomorphic mappings with the same index set. By
this construction of an envelope of holomorphy we have the following
lemma.
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LEMMA 1. Let (X, ) be a domain over a complex manifold, Y
be a complex manifold and F be a family of holomorphic mappings
of X in Y. There is uniquely an envelope (\-, X, ¥.) of holo-
morphy of (X, ) with respect to #. Moreover, let & be a subfamily
of 7 and (X,, X.,#.) be the envelope of holomorphy of (X, ) with
respect to <. There is a mapping P of (X, ¥-) m (X., ,) such
that (@, X., ¥.) is the holomorphic completion of (X., ¥.) with
respect to <.

2. We put

D={z=(2,2,--,2)eC"% [2|<1+e¢ |2|<1({=23,-.--,n)}
(1) Ufe=(2,2,-,2)eC 1 —e<fz|<1l+e [2;]<1l+e
(j:2’3, "':n)}

and
(2) E: {Z: (21722"”’zn)ecn; IzJI <1+8 (-7:1725 ”‘971’)}

for a positive number ¢ with ¢ < 1. E is the envelope of holomorphy
of D.

LEMMA 2. Let L be a complex Lie group. For any holomorphic
mapping f of D in L, there is a holomorphic mapping g of E in L
such that g = f in D.

Proof. We may assume that L is connected. Let 57~ be the
set of all holomorphic mappings of D in L. We introduce in 57 the
compact-open topology. As D is analytieally contractible to a point,
Z# is a connected topological group. We put

K@O)=1{2eC% |z|<1+e—0,|2]|<1-0(=2,3,--,n)}
UfgeC* 1 —e+ 0512|214+ —0, |2]<1+e—3d
G=23,--,m)}

and
E@ ={zeC™ |2;]<14+e—-0(G=1L2,---,m)}

for any positive number 6 with 0 <e. Let m be the complex di-
mension of L and exp be the exponential mapping of C™ in L. exp
maps an open neighborhood U = {weC™; |w;|<a (=1,2,:--, m)}
of the origin in C™ biholomorphically on an open neighborhood W of
the unit element ¢ of L. Then log = (exp| U)™" is a biholomorphic
mapping of W onto U. We put 7°(1) = {he 57; MK () c W}. Then
7°(1) is a neighborhood of the unit element 1 of the topological
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group 57, Since 5~ is connected, 57 is generated by 7°(1). There
is a finite number s of elements f, f, -+, f._; and f, of 7°(1) such
that f= f.f,---f. in D. Each logf; is a holomorphic mapping of
K(8) in the polydisc U. There is a holomorphic mapping G; of E(9)
in U such that G; = logf; in K@ N E@) for j=1,2,--+,8. We
put g = exp@G, expG,---exp @G, in E@). Then g is a holomorphic
mapping of E () in L such that g = f in K@) N E(9). Since 4 is
arbitrary, we have Lemma 2 by the theorem of identity.

Let (X, 4) be a domain over a Stein manifold S, L be a complex
Lie group, & = {f;; 1€ I} be a family of holomorphic mappings of X
in L and (A, X’, v’) be the envelope of holomorphy of (X, ) with
respect to #.

LemMA 3. (X', ') is p,-convex in the sense of Docquier-Grauert

[2):

Proof. Assume that (X', ') were not p-~convex. There is a
continuous mapping @ of the closure D of D, defined in (1) for a
positive number ¢ with ¢ <1, in X' UdX’ such that ¢(D)c X',
@b, c)c0X’ for beC with |b|<1—¢, ¢= (¢, +++,¢,) € C™" with
le;1=1(0=2,8,+++,n) and 4’ o ® can be continued to a biholomorphic
mapping = of E, given in (2) for the above ¢, in S. Here dX’ is the
boundary of the domain (X', 4') over S defined in §3.1d of [2].

Let f/ be a holomorphic continuation of f;e & to (A, X', 4') for
any 1€ I. By Lemma 2 there is a holomorphic mapping ¢; of E in
L such that g, = f/ o @ in D for any ¢¢ I.

We consider the sum space X’ U E. Let x, and «, be, respectively,
points of X’ and E such that 4'(x) = n(x,). Let U, and U, be, re-
spectively, neighborhoods of %, and %, in X’ and E such that +'|U,
and 7| U, are, respectively, biholomorphic mappings of U, and U, onto
an open neighborhood V in S. We shall identify #, and z, if and
only if flo (W' |U)™ = g;0 (| Uy for any i€ I. Let Z be the quotient
space of X’ U E by this equivalence relation. Let & X’ — Z and
7. E— Z be the canonical mappings. There is a locally topological
mapping { of Z in § such that {o & =+ and {on =7 Since Z is
a Hausdorff space, we can introduce in Z a complex structure such
that (Z, {) is a domain over S.

There is a holomorphic mapping %; of Z in L such that h; o & = f]
and h;07 = g; for any ie I. Then k; is a continuation of f/ to (¢,
Z,%). Since (\, X', ') is the envelope of holomorphy of X with
respect to &, there is a mapping g of (Z,0) in (X', ). Since
Lol =q', Eop and pto ¢ are, respectively, the identities of Z and X’.
Hence ¢ is a biholomorphic mapping of X’ on Z. Since (b, ¢) € E, we



4 K. ADACHI, M. SUZUKI AND M. YOSHIDA
have @(b, ¢) = (57" o )(b, ¢) € X'. This is a contradiction.

3. Let (X,+) be a domain over a Stein manifold S, (X, X, 7)
be its envelope of holomorphy, L be a complex Lie group and f be a
holomorphic mapping of X in L. Let (A, X’, ') be the open set of
holomorphy of f. By Lemma 3 and a theorem of Docquier-Grauert
[2], X' is a Stein manifold. Hence (X', ') is a domain of holomorphy
of a holomorphic function in X. Since (\, X, v) is the envelope of
holomorphy with respect to the family of all holomorphic functions
in X, there is a mapping 2 of (X, 7) in (X’, v’) such that x = f£o X
by Lemma 1. Let f’ be the holomorphic continuation of f to (, X',
). Then f’'op is the holomorphic continuation of f to (X, X, ).
Thus we have proved the following theorem.

THEOREM. Let (X, ) be a domain over a Stein manifold S and
(X, X, 9) be its envelope of holomorphy. Any holomorphic mapping
of X in a complex Lie group L has a holomorphic continuation to
(Xy X7 "7‘7})’
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