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Relationships between a topological space (more generally
a convergence space) and its associated function space C(X)
are investigated. The algebra of all continuous real-valued
functions on a space X together with the continuous con-
vergence structure is denoted by C.(X). After appropriate
generalizations of the axioms of countability to convergence
spaces, it is shown: 1. A completely regular topological space
X is Lindel6f if and only if C.(X) is first countable. 2. A
completely regular topological space X is separable and metriz-
able if and only if C,(X) is second countable. Generalizations
of (1) and (2) are introduced, and results and examples which
justify the use of axioms of countability in convergence space
theory are presented.

1. Preliminaries. We wish to investigate the interplay between
a convergence space (Limesraum, [1]) X and C(X), the algebra of all
continuous real-valued functions on X. Since the algebraic properties
of C(X) are not, in general, sufficient to determine the space X, we
are led to consider additional structures on C(X). The algebra C(X)
endowed with the continuous convergence structure (see [1]), which
we denote by C.(X), proves to be particularly well suited for our
work. We note that in the case of a locally compact topological space
X, the continuous convergence structure on C(X) coincides with the
compact-open topology. Thus Theorem 3 ((1) in the above paragraph)
generalizes a result proved by Warner for locally compact spaces.
(See [5], Theorem 17.)

We will study the largest class of convergence spaces with the
property that C,(X) determines the space X. Specifically, let
Hom, C.(X) denote the collection of all continuous homomorphisms
from C.(X) onto the reals together with the continuous convergence
structure. A convergence space X is said to be c-embedded if i,: X —
Hom, C.(X) is a homomorphism, where i, maps each z¢ X to the
homomorphism of point evaluation by 2z (.e., ix(®)iz(®)(f) = f(x) =
f(x) for every f e C(X)). Indeed, two c-embedded spaces X and Y are
homeomorphic if and only if C,(X) and C,(Y) are bicontinuously isomor-
phic. (See [2], Satz 5.) Furthermore, Binz has shown in [2] that the
c-embedded spaces are the largest class of convergence spaces with
this property. It is evident that every completely regular topological
space X is c-embedded. In a convergence space X, we will use the
notation “¢ — x” to indicate that a filter ¢ converges to = in X.
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2. The aim of this section is to characterize Lindelof and more
generally upper W-compact spaces.

We will first generalize a few topological concepts. By a covering
system & of a convergence space X, we mean a collection of subsets
of X with the property that for every convergent filter 4 on X, there
exists an Se€.%” such that Se¢. A basic subcovering of a covering
system &7 is a subfamily &#’ of & with the property that for every
convergent filter ¢ on X, there exists a finite number of elements in
&, {S;}r.., such that Yz, S; € ¢.

Let Y} denote an arbitrary infinite cardinal number.

DEerFINITION 1. A convergence space X is said to be upper W-
compact if every covering system of X has a basic subcovering of
cardinal number less than Y. In particular, X is Lindelof if it is
upper ¥W,-compact.

DEFINITION 2. A convergence space X is said to be first countable
(respectively W-countable) if for any point x € X and any filter ¢ con-
vergent to 2 in X, there exists a coarser filter ¢’ such that ¢ —
and ¢ has a countable basis (respectively a basis of cardinal number
less than ).

It is evident that our definitions correspond to the usual defini-
tions in the case of topological spaces.

Given a convergence group G (see [1]), we note that G is W-
countable if and only if the condition in Definition 2 holds for filters
convergent to the identity element in G.

We will need the following two technical results. Given a c-
embedded convergence space X, let X’ denote the underlying set X
together with the weak topology induced by C(X). We call X’ the
associated completely regular space of X and note that X’ is homeo-
morphic to Hom, C,(X), where the subscript s denotes the topology
of pointwise convergence.

LEMMA 1. Let X be a c-embedded convergence space and X' its
associated completely regular space. If ¢ is a comvergent filter in X,
then the filter ¢ gemerated by

(M*: Meg},

where M*' is the closure of M in X', is also convergent in X.

Let ¢ — 2 in X for some e X. We can consider ¢ convergent
to z in Hom, C,(X). This means that for every convergent filter 4
in C(X), say 6 — f, and for every ¢ > 0, there existsa Tc @ and an
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Me ¢ such that
w(T x M) C{f(®) + [—¢, e},

where w is the evaluation map sending each (f, p) to f(p) (.e.,
lg(y) — f(x)] < ¢ for every ge T and every ye€ M). Since X' carries
the weak topology induced by all the functions in C(X),

w(T x M*) c {f(x) + [—¢, €]} .

Hence ¢ converges to z in X.

We say that <2 is a refinement of a covering system & if #
is a covering system with the property that each Rec <2 is contained
in some element of &£

LEMMA 2. Let X be a c-embedded convergemce space. Every
covering system of X has a refinement consisting of sets closed in
the assoctated completely regular space.

Let &“ be a covering system of X and let @ denote the collec-
tion of all convergent filters in X. For ¢c®, Lemma 1 implies ¢ ¢
®. Therefore, there exists an Se.&” such that Se¢g. Since ¢ hasa
basis consisting of sets closed in X’, we can choose a set B, € ¢ such
that B, is closed in X’ and B, c S. Of course ¢ is coarser than ¢
and hence {B,},., is indeed a refinement of .5%

THEOREM 1. A c-embedded convergence space X is upper Y-com-
pact (respectively Lindelof) if and only iof C.(X) is Y-countable
(respectively first countable).

Proof. Assume X is upper W-compact. Again, denote by @ the
collection of all convergent filters in X. Let 6 be an arbitrary filter
in C,(X) convergent to 0, the zero function. This means that for
every 1/n, where ne N, and every ¢ € @ there exists a T,;<€6 and
an M, ;€ ¢ so that

w(Tl/'lbsﬁ X M/n,¢) c [_1, ’:’1_] .
n n
For a fixed ne N, the collection

{th: ¢ € (D}

is a covering system of X and by assumption admits a basic sub-
covering
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S = {M,: e v}

of cardinal number less than Y. Let 7, be the element of ¢ that
corresponds to M, as above. That is,

’

w(T, x M) [;1 l] )
n’ n.
It follows that
{T,,: ae CJ .%,}

generates a filter ¢’ coarser than 6. Obviously ¢’ has a basis of
cardinal number less than }. It only remains to verify that ¢ — 0.
Given 1/n for me N and ¢c @ there exists a finite subset of %7,
{a, a, «++, @}, such that Uk, M,,e¢. Now T = Ni, T, is an ele-
ment of ¢’ with the property that

w(T X ij Mai‘ c [:——1—, -l] ,
= n’ n

and hence ¢’ converges to 0 in C,(X).
Conversely, assume C,(X) is W-countable. Let

& = {8, ac ¥}

be an arbitrary covering system of X. Because of Lemma 2, we can
assume that the elements of .~ are closed in the associated completely
regular space. We will prove that & has a basic subcovering of
cardinal number less than ¥. For each S,e .5 set

T. = {feCX): f(S.) = {0}} .

Clearly, the collection of all sets T, for a¢ €. generates a filter ¢
that converges to 0 in C,(X). By assumption, there exists a filter ¢’
coarser than 6, convergent to 0 in C,(X), and having a base of cardinal
number less than W. Let

{Ds: Be Z}

be a basis for ¢, where the cardinal number of the index set <Z is
less than Y. Since 6’ — 0, for every ¢c @ there existsa D, ¢’ and
an L, c¢ such that

(I) w(Dp x L) c[-1,1].
For a fixed B¢ <7, let the union of all sets L, that correspond to
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D, in the sense of (I) be denoted by R;. It follows that
R - {R,g: B S .@}

is a covering system for X. Since ¢’ =6, for a given gec <, there
exists a finite subset .9 of .o such that

Di> N T..
(XEJVB
We claim that
) R,c U S..
ae;\lﬁ

Assume to the contrary, that there exists a point xeRﬁ\an,ﬁ S
where “\” denotes the set theoretic difference. The fact that U... e
is closed in the associated completely regular space X’ implies that
there exists a function fe C(X’) such that

f@ =2 and f<anJﬁ S.) = {0} -
Because of the natural isomorphism from C(X’) onto C(X), we can
assume fe C(X). Clearly feMNaes s Ta but, in view of (I), the func-
tion f¢ D, This contradicts the fact that Dy O MNaeus; Toy and hence
our claim is established. Now, it follows from the inclusion (II) that
the collection

F = {Sa:ae U Lsa/,g}
Becw#
is a basic subcovering of .2 Furthermore, the cardinality of &’ is
less than Y, and thus X is upper }}-compact.

COROLLARY. Let X be a c-embedded convergence space. If C.(X)
18 Lindeldf, then X is first countable.

If C,(X) is Lindelof then C,(C.(X)) is first countable. Since X
is c-embedded, it is homeomorphic to a subspace of C.(C.(X)), and
thus first countable.

In §4 we will provide examples of Lindelof convergence algebras
C.(X).

3. Here, we obtain a characterization of separable metrizable
topological spaces.

Let X be a convergence space. By a basis for X, we mean a
collection .7~ of subsets of X with the following property: For any
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convergent filter ¢ on X, say ¢— @, there exists a coarser filter ¢
such that ¢'— « and ¢’ has a basis consisting of sets in 77

DEFINITION 3. The least infinite cardinal number of a basis for
X is called the weight of X. In particular, X is second countable if
it has weight ..

It is easy to verify that our definitions of basis, weight, and
second countable coincide with the usual concepts in the case of
topological spaces.

The following generalization of a topological result is evident.

REMARK. (a) Let X be a convergence space having weight .
Then any subspace of X has weight less than or equal to .

(b) Any subspace of a second countable convergence space is
second countable.

(¢) A second countable convergence space is first countable.

THEOREM 2. A c-embedded convergence space X has weight ¥
(respectively is second countable) if and only if C.(X) has weight Y
(respectively is second countable).

Proof. Assume X has weight Y. Let
7 ={U,; e &)

be a basis for X of cardinal number W. Given aec ./ reQ (the
rational numbers), and n e N, we define the following subset of C(X):

M,,, = {fe C(X): £(U) [r L _1_]} .
" %
Denote by .# the collection of all finite intersections of sets of the
form M,,, ., for a¢e. o7, rc @, and nec N. Clearly, the cardinality of
A#is still W. We now show that _# is indeed a basis for C,(X).
Let ¢ be an arbitrary convergent filter in C,(X). Say 6 -—f. Our
assumption implies that for any convergent filter ¢ in X, say ¢ — =,
there exists a convergent filter ¢’ which is coarser than ¢, and has
a base congisting of sets in .. Thus, we can find a U,c 4, and a

T e 6 such that
1

w(T x U.) { F@) + [—;7} 27]} :

Now choose as re @ so that

f@) —ris -
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Because of our construction, there exists an M, e #Z(M,.,= M,,...)
such that for every ge M, , and every ye U,,

o) — F@)| < o) — r] + |7 — F@)] g%

or

WMy, x U < {7+ [Z2 2]}

n b
We observe that M,, D T, since

l9@) — 71 < lgw) — F@ |+ | f@) — 7| g%

for every ge T and every ye U,. Therefore, the collection of all
M;,,,, for ¢ a convergent filter on X and = e N, generates a filter ¢’
coarser than ¢ with a basis consisting of sets in _# It is also clear
that ¢ converges to f. Further, there can exist no basis _#’ for
C.(X) of cardinality strictly less than Y. If such an _#"' existed,
then, as we have just proved, C.(C.(X)) would have a basis of cardi-
nality strictly less than Y. Because of the preceding remark and
the fact that X is homeomorphic to a subspace of C,(C,(X)), it follows
that X would have weight unequal to .

Conversely, assume C,(X) has weight Y. Then, as above, X
must have weight less than or equal to Y. The necessity of the
theorem implies that X has weight exactly W.

Sinece a completely regular topological space is separable and
metrizable if and only if it is second countable (see [4], p. 187 and
p. 195), we have the following result.

THEOREM 3. A completely regular topological space X is separable
and metrizable if and only if C(X) is second countable.

COROLLARY. Let X be a completely regular topological space.
C.(X) is a separable and metrizable topological space if and only if X
is separable, metrizable and locally compact.

For a completely regular topological space X, one can verify that
C.(X) is topological space if and only if X is locally compact. (See
[3], p. 329.) Thus, in view of the discussion preceding the last
theorem, the proof is immediate.

4. We will extend two results that are well known for topologi-
cal spaces to the class of convergence spaces.
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THEOREM 4. Let X be a convergence space that has weight less
than Y (respectively 1s second countable). Then any subspace of X
18 upper W-compact (respectively Lindeldf).

Because of the remark in §3, it suffices to show that X itself is
upper W-compact. Consider .7~ = {T,} to be a basis for X of cardinal
number less than Y. Let S be an arbitrary covering system for
X. For each T,c .7 choose S, to be a fixed element in & such
that S, o T, if such an element S, exists. Denote by .’ the collec-
tion of these S,. Clearly &’ is collection of eardinal number less
than W. We will verify that .&#” is actually a basic subcovering of
S Let ¢ be an arbitrary convergent filter in X, say ¢—2x. By
assumption, there exists a filter ¢’ coarser than ¢ such that ¢’ —» 2
and ¢ has a basis consisting of sets in .. Since .&¥ is a covering
system, there exists an S in & with Sc¢’. Because S must contain
some element T, €.9, where T, is also in ¢’, we can find an S, €
<" such that S, > T,. Thus S, is an element of both ¢ and ¢.

EXAMPLES. It is now easy to demonstrate that there exist con-
vergence spaces that are upper W-compact (respectively Lindelof) and
not topological, namely, C.(X) for X a completely regular topological
space having weight less than Y (respectively second countable) and
not locally compact. Moreover, such a C,.(X) has weight less than
¥ (respectively is second countable) but is not topological.

For an example of a first countable convergence space that is
neither second countable nor topological, consider C.(X) where X is
a completely regular topological space which is Lindelof and neither
second countable nor locally compact.

In analogy with topological spaces, we say a subset S is dense
in a convergence space Y if the adherence of S is Y. The space Y
is said to be separable if it contains a countable dense subset.

THEOREM 5. Any subspace of a second countable convergence space
is separable.

Let Y be a second countable convergence space with
g = {Tz}ill

a countable basis. In light of the remark in §3, it is sufficient to
prove that Y is separable. For each T;e.7, picka y;€ Y such that
y;€ T.. We claim that {y;}7, is dense in Y. Given y ¢ Y, there exists
a filter ¢ convergent to y in Y with the property that ¢ has a basis
consisting of sets in .. Hence ¢ has a trace on {y;},, which completes
the proof.
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REMARK. We have shown (Theorems 3, 4, and 5) that if X is a
separable and metrizable topological space, then C,(X) is second
countable, first countable, Lindelof, and separable.

REFERENCES

1. E. Binz and H. H. Keller, Funktionenrdime in der Ketegorie der Limesrdume, Ann.
Acad. Scie. Fenn. A, I, 383 (1966), 1-21.

2. E. Binz, Zu den Beziechungen zwischen c-cinbettbaren Limesrdumen und threr
limitierten Funktionenalgebren, Math. Ann., 181 (1969), 45-52.

8. N. Bourbaki, General Topology, Part II, Addison and Wesley, (1966).

4. J. Dugundji, Topology, Allyn and Bacon, Boston, (1966).

5. S. Warner, The topology of compact convergence on continuous function spaces,
Duke Math. J., 25 (1958), 265-282.

Received March 7, 1972. The results in this paper are contained in the thesis of the
author (Queen’s University, 1971) written under the supervision of Professor E. Binz.

UNIVERSITY OF ARKANSAS






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI*

Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. WoLr K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

* C, DePrima will replace J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 47, No. 1 January, 1973

K. Adachi, Masuo Suzuki and M. Yoshida, Continuation of holomorphic

mappings, with values in a complex Lie group .. ................ccc.uun. 1
Michael Aschbacher, A characterization of the unitary and symplectic groups

over finite fields of characteristicatleast5..................c.ccccouui... 5
Larry Eugene Bobisud and James Calvert, Energy bounds and virial theorems for

abStract wave eqUALIONS . . .. .......e e et 27
Christer Borell, A note on an inequality for rearrangements ................... 39
Peter Southcott Bullen and S. N. Mukhopadhyay, Peano derivatives and general

INEEGIALS . .. oo e 43
Wendell Dan Curtis, Yu-Lee Lee and Forrest Miller, A class of infinite

dimensional subgroups of Diff” (X) which are Banach Lie groups . . .. ..... 59
Paul C. Eklof, The structure of ultraproducts of abelian groups ................ 67
William Alan Feldman, Axioms of countability and the algebra C(X) .......... 81
Jack Tilden Goodykoontz, Jr., Aposyndetic properties of hyperspaces........... 91
George Gritzer and J. Plonka, On the number of polynomials of an idempotent

algebra. I1. ... ... ... e 99
Alan Trinler Huckleberry, The weak envelope of holomorphy for algebras of

holomorphic fURCLIONS . ... .. ... e 115
John Joseph Hutchinson and Julius Martin Zelmanowitz, Subdirect sum

decompositions of endomorphisSm rings . ............ccooeiiiiiiiiiiien. 129

Gary Douglas Jones, An asymptotic property of solutions of
V' py gy =0 .
Howard E. Lacey, On the classification of Lindenstrauss spac

Charles Dwight Lahr, Approximate identities for convolution
algebras....... ...
George William Luna, Subdifferentials of convex functions on
SPACES . v v e e e e e e
Nelson Groh Markley, Locally circular minimal sets. .. ... ..
Robert Wilmer Miller, Endomorphism rings of finitely generd
MOAUlesS . ...
Donald Steven Passman, On the semisimplicity of group ring
BFOUDS . o vt e e e e e

Bennie Jake Pearson, Dendritic compactifications of certain
SPOACES . o v v e et e et e et

Ryotaro Satd, Abel-ergodic theorems for subsequences . ... ..
Henry S. Sharp, Jr., Locally complete graphs...............

Harris Samuel Shultz, A very weak topology for the Mikusins
OPETALOFS . oo v i et ettt et
Elena Stroescu, Isometric dilations of contractions on Banac
Charles W. Trigg, Versum sequences in the binary system . . .
William L. Voxman, On the countable union of cellular deco
n-manifolds . .......... ... . . . . .

Robert Francis Wheeler, The strict topology, separable meas
PAFACOMPACINESS .« o v e ve i ee e e e i eieaen


http://dx.doi.org/10.2140/pjm.1973.47.1
http://dx.doi.org/10.2140/pjm.1973.47.1
http://dx.doi.org/10.2140/pjm.1973.47.5
http://dx.doi.org/10.2140/pjm.1973.47.5
http://dx.doi.org/10.2140/pjm.1973.47.27
http://dx.doi.org/10.2140/pjm.1973.47.27
http://dx.doi.org/10.2140/pjm.1973.47.39
http://dx.doi.org/10.2140/pjm.1973.47.43
http://dx.doi.org/10.2140/pjm.1973.47.43
http://dx.doi.org/10.2140/pjm.1973.47.59
http://dx.doi.org/10.2140/pjm.1973.47.59
http://dx.doi.org/10.2140/pjm.1973.47.67
http://dx.doi.org/10.2140/pjm.1973.47.91
http://dx.doi.org/10.2140/pjm.1973.47.99
http://dx.doi.org/10.2140/pjm.1973.47.99
http://dx.doi.org/10.2140/pjm.1973.47.115
http://dx.doi.org/10.2140/pjm.1973.47.115
http://dx.doi.org/10.2140/pjm.1973.47.129
http://dx.doi.org/10.2140/pjm.1973.47.129
http://dx.doi.org/10.2140/pjm.1973.47.135
http://dx.doi.org/10.2140/pjm.1973.47.135
http://dx.doi.org/10.2140/pjm.1973.47.139
http://dx.doi.org/10.2140/pjm.1973.47.147
http://dx.doi.org/10.2140/pjm.1973.47.147
http://dx.doi.org/10.2140/pjm.1973.47.161
http://dx.doi.org/10.2140/pjm.1973.47.161
http://dx.doi.org/10.2140/pjm.1973.47.177
http://dx.doi.org/10.2140/pjm.1973.47.199
http://dx.doi.org/10.2140/pjm.1973.47.199
http://dx.doi.org/10.2140/pjm.1973.47.221
http://dx.doi.org/10.2140/pjm.1973.47.221
http://dx.doi.org/10.2140/pjm.1973.47.229
http://dx.doi.org/10.2140/pjm.1973.47.229
http://dx.doi.org/10.2140/pjm.1973.47.233
http://dx.doi.org/10.2140/pjm.1973.47.243
http://dx.doi.org/10.2140/pjm.1973.47.251
http://dx.doi.org/10.2140/pjm.1973.47.251
http://dx.doi.org/10.2140/pjm.1973.47.257
http://dx.doi.org/10.2140/pjm.1973.47.263
http://dx.doi.org/10.2140/pjm.1973.47.277
http://dx.doi.org/10.2140/pjm.1973.47.277
http://dx.doi.org/10.2140/pjm.1973.47.287
http://dx.doi.org/10.2140/pjm.1973.47.287

	
	
	

