Pacific Journal of Mathematics

SUBDIRECT SUM DECOMPOSITIONS OF ENDOMORPHISM RINGS

JOHN JOSEPH HUTCHINSON AND JULIUS MARTIN ZELMANOWITZ

Vol. 47, No. 1 January 1973

SUBDIRECT SUM DECOMPOSITIONS OF ENDOMORPHISM RINGS

John J. Hutchinson and Julius Zelmanowitz

The main result of this paper is that if a ring R is an essential subdirect sum of prime rings and M is a torsionless R-module, then the endomorphism ring of M is also an essential subdirect sum of prime rings.

- In [4] Levy defined irredundant subdirect sums of rings. This provided a unique decomposition of a left quotient semisimple ring as a subdirect sum of left quotient simple rings. He also showed that irredundant subdirect sums of prime rings possess some rather strong uniqueness properties.
- In [2] essential subdirect sums were defined and Levy's decomposition theorem was obtained for essential subdirect sums. Furthermore in [3] it was shown that a ring R has a maximal left quotient ring which is a direct product of full linear rings if and only if R is an essential subdirect sum of rings whose maximal left quotient ring is full linear.
- In §1 of this paper we show that for subdirect sums of prime rings, essential and irredundant subdirect sums are identical. We also give some uniqueness properties of essential subdirect sums which are even stronger than those for irredundant subdirect sums.
- In §2 we show that if M is a torsionless R-module and R is an essential subdirect sum of prime rings, then the endomorphism ring of M is also an essential subdirect sum of prime rings. We get this theorem as a consequence of a more general result about Morita contexts. The proof of the more general result is notationally more efficient.
- 1. Essential subdirect sums of prime rings. In what follows R will be an associative ring which is not assumed to have an identity. R will express that M is a left R-module. A submodule K of M is an essential submodule if every nonzero submodule of M has nonzero intersection with K. M will then be an essential extension of K.

Let a set of nonzero rings $\{R_{\alpha} | \alpha \in A\}$ be given, and let $\{\pi_{\alpha} | \alpha \in A\}$ denote the set of projections from the (complete) direct product $\prod_{\alpha} R_{\alpha}$ onto R_{α} . R is a *subdirect sum* of the R_{α} if there is an isomorphism f of R into $\prod_{\alpha} R_{\alpha}$ such that $f \pi_{\alpha}$ is onto R_{α} for each $\alpha \in A$.

Let f_{β} be the map from R into $\prod_{\alpha \neq \beta} R_{\alpha}$ defined by $f_{\beta} : r \rightarrow \{rf\pi_{\alpha} \mid \alpha \neq \beta\}$. The subdirect sum is *irredundant* if the kernel of f_{β}

is nonzero for each $\beta \in A$. If we identify R and Rf (which we will henceforth do), then $R \subseteq \prod_{\alpha} R_{\alpha}$ and the subdirect sum is irredundant if and only if $R \cap R_{\alpha} \neq 0$ for all $\alpha \in A$ $(R \cap R_{\alpha} = \ker f_{\alpha})$.

The subdirect sum is *essential* if R is an essential left R-submodule of $\prod_{\alpha} R_{\alpha}$. If the subdirect sum is essential, then it is irredundant since R_{α} is an R-submodule of $\prod_{\alpha} R_{\alpha}$ and $R_{\alpha} \cap R \neq 0$ for each $\alpha \in A$.

LEMMA 1.1. If R is a subdirect sum of nonzero prime rings $\{R_{\alpha} | \alpha \in A\}$; then the subdirect sum is essential if and only if it is irredundant.

Proof. If the subdirect sum is irredundant, then by [4, Prop. 4.2] the maximal left quotient ring \bar{R} of R is equal to the direct product of the maximal left quotient rings \bar{R}_{α} of R_{α} . Since $R \subseteq \prod_{\alpha} R_{\alpha} \subseteq \prod_{\alpha} \bar{R}$ it follows that R is essential in $\prod_{\alpha} R_{\alpha}$ and the subdirect sum is essential.

The following example shows that essential subdirect sums and irredundant subdirect sums are not in general the same, even for left quotient semisimple rings.

EXAMPLE 1.2. Let S_1 and S_2 each be the direct sum of two copies of the integers. If

$$R = \{((a, b), (c, d)) \in S_1 \bigoplus S_2 | b = d\}$$
 ,

then R is a ring which is an irredundant subdirect sum of S_1 and S_2 . However M = Rx where x = ((0, 0), (0, 1)) is a nonzero R-submodule of $S_1 \oplus S_2$ but $M \cap R = 0$. Hence R is not an essential subdirect sum of S_1 and S_2 .

LEMMA 1.3. Suppose R is a subdirect sum of nonzero rings R_1, \dots, R_n and each R_i is a subdirect sum of $Q_{i,1}, \dots, Q_{i,k_i}$. The natural subdirect sum decomposition of R as a subdirect sum of the $\{Q_{i,j}\}$ is essential if and only if R is an essential subdirect sum of R_1, \dots, R_n and each R_i is an essential subdirect sum of $Q_{i,1}, \dots, Q_{i,k_i}$.

Proof. [2, Prop. 2.2].

Loosely speaking, we may think of the preceding lemma as a generalized associative law for essential subdirect sums. The following example shows that irredundant subdirect sums do not have this property.

EXAMPLE 1.4. Suppose S_1 , S_2 , and R are as in Example 1.2, and

let $S_3 = S_1$. If $Q = \{(((a, b), (c, d)), (e, f)) | ((a, b), (c, d)) \in R, (e, f) \in S_3,$ and $a = e\}$, then Q is a ring and Q is an irredundant subdirect sum of R and S_3 . The natural subdirect sum of S_1 , S_2 , and S_3 is not irredundant since $S_1 \cap Q = 0$.

LEMMA 1.5. Let C be an essential subdirect sum of prime rings C_1, \dots, C_n and let A and B be prime rings. If an essential subdirect sum of A and C is isomorphic to an essential subdirect sum of B and C, then $A \cong B$.

Proof. If an essential subdirect sum of A and C is isomorphic to an essential subdirect sum of B and C, then since C is an essential subdirect sum of C_1, \dots, C_n we have by Lemma 1.3 that an essential subdirect sum of A, C_1, \dots, C_n is isomorphic to an essential subdirect sum of B, C_1, \dots, C_n . By Lemma 1.1 the subdirect sum is irredundant, and by [4, Theo. 3.2] the subdirect summands are unique up to isomorphism. Thus $A \cong B$.

Loosely speaking, the preceding lemma is a cancellation law for essential subdirect sums of prime rings. The following example [4, p. 74] shows that the corresponding result does not hold for irredundant subdirect sums.

EXAMPLE 1.6. Let A be a polynomial ring in an infinite number of indeterminants over the integers, and let B be the same polynomial ring over the rationals. Then there is a homomorphism f (respectively g) of A (respectively B) onto itself with a nonzero kernel. Let $C = A \oplus B$. Then $R = \{(x, (y, z)) | x \in A, (y, z) \in C, f(x) = y\}$ is a subdirect sum of A and C. The subdirect sum is irredundant since if x is any nonzero element of ker f, then $(x, (0, 0)) \in A \cap R$; and if x is any nonzero element of B, then $(0, (0, x)) \in C \cap R$. However $R \cong C$ since the middle component can be omitted. Similarly we construct an irredundant subdirect sum of B and C which is isomorphic to C. Since A is not isomorphic to B, we have the desired example.

2. Essential subdirect sum decompositions of endomorphism rings. Assume that (R, M, N, E) is a Morita context [1]. That is, suppose $_{\mathbb{R}}M_{\mathbb{R}}$ and $_{\mathbb{E}}N_{\mathbb{R}}$ are bimodules with R-R bimodule homomorphism

$$(,):M\otimes_{\scriptscriptstyle{E}}N\to R$$

and E-E bimodule homomorphism

[,]:
$$N \bigoplus_{R} M \rightarrow E$$

 $m_1[n_1, m_2] = (m_1, n_1)m_2$ and $n_1(m_1, n_2) = [n_1, m_1]n_2$

for all $n_i \in N$ and $m_i \in M$.

EXAMPLE 2.1. Let $_RM$ be any R-module with $E = \operatorname{Hom}_R(M, M)$ and $N = \operatorname{Hom}_R(M, R)$. Set (m, f) = mf for $m \in M$ and $f \in N$ and define [f, m] via $m_1[f, m] = (m_1, f)m$ for $m_1 \in M$. Then (R, M, N, E) is a Morita context which we will call the standard context for $_RM$. It is easy to see that M_E is faithful and (M, f) = 0 implies f = 0. It is also immediate that $_RM$ is torsionless if and only if (m, N) = 0 implies m = 0.

Henceforth we assume that (R, M, N, E) is a Morita context with $E \neq 0$. If I is an ideal of R define $I' = \{e \in E \mid (Me, N) \subseteq I\}$; I' is an ideal of E. Similarly for J an ideal of $E, J' = \{r \in R \mid [Nr, M] \subseteq J\}$ is an ideal of R.

LEMMA 2.2. Let P be a prime ideal of R which does not contain (M, N). Then

- (i) P' is a prime ideal of E, and
- (ii) P = P''.

Proof. (i) If $XY \subseteq P'$ where X and Y are ideals of E, then $(MXY, N) \subseteq P$ so that $(MX, N)(MX, N) = (MX[N, M]Y, N) \subseteq (MXY, N) \subseteq P$. Since P is prime, either $(MY, N) \subseteq P$ or $(MY, N) \subseteq P$. Hence either $X \subseteq P'$ or $Y \subseteq P'$ and P' will be a prime ideal of E provided $P' \neq E$. Since $(M, N) \nsubseteq P$, $(M[N, M], N) = (M, N)^2 \nsubseteq P$, and this implies that $P' \neq E$.

(ii) It is easy to show that $P'' = \{r \in R \mid (M, N)r(M, N) \subseteq P\}$. Thus $(M, N)P''(M, N) \subseteq P$. Since P is a prime ideal of R and does not contain (M, N), it must be the case that $P'' \subseteq P$. The reverse inclusion is obvious, and so P = P''.

THEOREM 2.3. Let R be an essential subdirect sum of prime rings $\{R_{\alpha} | \alpha \in A\}$, and suppose that (R, M, N, E) is a Morita context such that (Me, N) = 0 only if $e = 0 \in E$. Then E is an essential subdirect sum of prime rings $\{E_{\beta} | \beta \in B\}$ for some subset $B \subseteq A$.

Proof. R is clearly semiprime and there exist prime ideals $\{P_{\alpha} | \alpha \in A\}$ of R such that

- (i) $R/P_{\alpha}\cong R_{\alpha}$ for each $\alpha\in A$,
- (ii) $\bigcap_{\alpha} P_{\alpha} = 0$,
- (iii) $\bigcap_{\alpha\neq\beta}P_{\alpha}\neq 0$ for each $\beta\in A$ $(R\cap R_{\beta}\neq 0)$.

Set $I = \{r \in R | r(M, N) = 0\}$. I is an annihilator ideal, and we

¹ Equivalently, E is semiprime and [N, M] is an essential left ideal of E.

assert that $I = \{r \in R | [Nr, M] = 0\}$. To see this, note that r(M, N) = 0 implies that (M[Nr, M], N) = (M, N)r(M, N) = 0, whence by hypothesis [Nr, M] = 0; conversely, if [N, rM] = 0 then $(r(M, N))^2 = (rM[Nr, M], N) = 0$ whence r(M, N) = 0 because R is semiprime.

Next, set $B = \{\beta \in A \mid P_{\beta} \supseteq I \text{ and } P_{\beta} \not\supseteq (M, N)\}$ and $C = \{\gamma \in A \mid P_{\gamma} \supseteq (M, N)\}$. Since each $P_{\alpha} \supseteq I(M, N) = 0$ and P_{α} is prime, it follows that A is the disjoint union of B and C. We will prove that E is an essential subdirect sum of the prime rings $\{E_{\beta} = E/P'_{\beta} \mid \beta \in B\}$; i.e., we show that (i) $\bigcap_{\beta \in B} P'_{\beta} = 0$, and (ii) $\bigcap_{\beta \neq \beta_{0}, \beta \in B} P'_{\beta} \neq 0$ for any fixed $\beta_{0} \in B$.

- (i) If $e \in \bigcap_{\beta \in B} P'_{\beta}$, then $(Me, N) \subseteq \bigcap_{\beta \in B} P_{\beta}$, and so $(Me, N) \subseteq \bigcap_{\beta \in B} P_{\beta} \cap \bigcap_{\gamma \in C} P_{\gamma} = \bigcap_{\alpha \in A} P_{\alpha} = 0$. Thus e = 0 and $\bigcap_{\beta \in B} P'_{\beta} = 0$.
- (ii) Suppose $\bigcap_{\beta \neq \beta_0, \beta \in B} P'_{\beta} = 0$ for some $\beta_0 \in B$. First observe that $I \cap \bigcap_{\gamma \in G} P_{\gamma} \subseteq \bigcap_{\beta \in B} P_{\beta} \cap \bigcap_{\gamma \in G} P_{\gamma} = \bigcap_{\alpha \in A} P_{\alpha} = 0$. But then

$$egin{aligned} igcap_{lpha\in A,\,lpha
eqeta_0} P_lpha &= igcap_{eta\in B,eta
eqeta_0} P_eta\capigcap_{\gamma} P_eta &= igcap_{eta\in B,eta
eqeta_0} P_eta''\capigcap_{\gamma\in C} P_\gamma \ &= \left\{r\in R|[Nr,\,M] \subseteqqigcap_{eta\in B,eta
eqeta_0} P_eta'=0
ight\}\capigcap_{\gamma\in C} P_\gamma = I\capigcap_{\gamma\in C} P_\gamma = 0 \;, \end{aligned}$$

where the second equality comes from Lemma 2.2. This contradicts $\bigcap_{\alpha \in A, \alpha \neq \beta_0} P_{\alpha} \neq 0$, and establishes the claim.

In case C is the empty set (this occurs exactly when I=0), we define $\bigcap_{r\in C} P_r=0$, and the above proof is valid. Note that for the standard context with $_RM$ torsionless we have I=0 exactly when $_RM$ is faithful.

COROLLARY 2.4. Let (R, M, N, E) be a Morita context such that [Nr, M] = 0 only if $r = 0 \in R$. If E is an essential subdirect sum of prime rings, then the same is true for R.

Proof. Apply the previous theorem to the symmetric Morita context (E, N, M, R).

COROLLARY 2.5. If $_RM$ is a torsionless module and R is an essential subdirect sum of prime rings, then the endomorphism ring of $_RM$ is an essential subdirect sum of prime rings.

Proof. Use the standard context for $_{\scriptscriptstyle R}M$.

COROLLARY 2.6. If R is a semiprime ring with the maximum condition on annihilator ideals, and (R, M, N, E) is a Morita context such that (Me, N) = 0 only if $e = 0 \in E$, then E is a semiprime ring with the maximum condition on annihilator ideals.

Proof. By [4, Theo. 3.13], R is a semiprime ring with the

maximum conditions on annihilator ideals if and only if R is a subdirect sum of a finite number of prime rings. Theorem 2.3 ensures that this property is inherited by E.

REMARK. The methods employed above do not seem sufficient to treat the passage of chain conditions on one-sided annihilator ideals to endomorphism rings. Results in this direction would be of interest.

REFERENCES

- 1. H. Bass, *The Morita Theorems*, Lecture notes, University of Oregon, Eugene, Oregon, 1962.
- 2. J. J. Hutchinson, Intrinsic extensions of rings, Pacific J. Math., 30 (1969), 669-677.
- 3. ——, Quotient full linear rings, Proc. Amer. Math. Soc., 28 (1971), 375-378.
- 4. L. Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc., 106 (1963), 67-76.

Received March 13, 1972 and in revised form September 27, 1972. The second author was partially supported by NSF grant GP-34098.

WASHINGTON STATE UNIVERSITY AND UNIVERSITY OF CALIFORNIA, SANTA BARBARA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

R. A. BEAUMONT University of Washington Seattle, Washington 98105 J. DUGUNDJ1*
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

^{*} C. DePrima will replace J. Dugundji until August 1974.

Pacific Journal of Mathematics

Vol. 47, No. 1

January, 1973

K. Adachi, Masuo Suzuki and M. Yoshida, Continuation of holomorphic mappings, with values in a complex Lie group	1
Michael Aschbacher, A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5	5
Larry Eugene Bobisud and James Calvert, Energy bounds and virial theorems fabstract wave equations	or
Christer Borell, A note on an inequality for rearrangements	
Peter Southcott Bullen and S. N. Mukhopadhyay, Peano derivatives and general	ıl
<i>integrals</i>	43
dimensional subgroups of $\operatorname{Diff}^r(X)$ which are Banach Lie groups	
Paul C. Eklof, The structure of ultraproducts of abelian groups	. 67
William Alan Feldman, Axioms of countability and the algebra $C(X)$. 81
Jack Tilden Goodykoontz, Jr., Aposyndetic properties of hyperspaces	91
George Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra. II	99
Alan Trinler Huckleberry, <i>The weak envelope of holomorphy for algebras of</i>	. ,,
holomorphic functions	. 115
John Joseph Hutchinson and Julius Martin Zelmanowitz, Subdirect sum decompositions of endomorphism rings	129
Gary Douglas Jones, An asymptotic property of solutions of	
$y''' + py' + qy = 0 \dots \dots$. 135
Howard E. Lacey, On the classification of Lindenstrauss spaces	
Charles Dwight Lahr, Approximate identities for convolution measure	
algebras	147
George William Luna, Subdifferentials of convex functions on Banach	
spaces	161
Nelson Groh Markley, Locally circular minimal sets	
Robert Wilmer Miller, Endomorphism rings of finitely generated projective modules	. 199
Donald Steven Passman, On the semisimplicity of group rings of linear	221
groups	221
Bennie Jake Pearson, Dendritic compactifications of certain dendritic	220
spaces	229
Ryōtarō Satō, Abel-ergodic theorems for subsequences	
Henry S. Sharp, Jr., Locally complete graphs	243
Harris Samuel Shultz, A very weak topology for the Mikusinski field of	0.51
operators	
Elena Stroescu, Isometric dilations of contractions on Banach spaces	
Charles W. Trigg, Versum sequences in the binary system	. 263
William L. Voxman, On the countable union of cellular decompositions of n-manifolds	277
Robert Francis Wheeler, <i>The strict topology, separable measures, and</i>	211
naracompactness	287