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ON THE CLASSIFICATION OF
LINDENSTRAUSS SPACES

H. ELTON LACEY

A Lindenstrauss space is a real Banach space X such
that its dual X* is linearly isometric to L;(z) for some measure
2. The purpose of this paper is to describe how certain
classical types of Lindenstrauss spaces are characterized by
mappings from a compact Hausdorff space S into C(S)*.

Let S be a compact Hausdorff space and po: S — C(S)* a bounded
function such that for each fe C(S), the function f, defined by
fo(s) = \ fdo(s) is integrable with respect to each regular Borel
measure on S. Thus o induces a natural bounded linear operator P
on C(S)* defined by (Pu)(f) = S fodge for all e C(S)* and fe C(S).
If @ |le(s)| <1 for all seS, and (ii) whenever peC(S) and
S fdp = 0 for all fe C(S) with f = f,, then S fudpt = 0 for all fe C(S),
then o is said to be an affine mapping.

It was shown in [1] that if o is affine, then X, = {fe C(S): f = f,}
is a Lindenstrauss space, P is a contractive projection on C(S)* with
kernel equal to X: = {¢e C(S)*: u(f) = 0 for all fe X,}. Moreover,
the restriction mapping pg— p¢| X, is a linear isometry from the
range of P onto X}.

Condition (ii) of the definition of an affine mapping is usually the
hardest to verify. In [7] Gleit gives a nontrivial example when
0o(s) = 0 for all se S. Although he did not actually use this termi-
nology, careful inspection of his proof yields that the mapping he
postulates is indeed an affine mapping. In fact, slight modifications
in his proof yields the following general result.

THEOREM 1. (Gleit). Let S be a compact Hausdorff space and
T a closed subset of S. Let p:S— C(S)* be a mapping such that

(a) |G| £1 for all se S,

(b) po(s) = e, (i.e., point evaluation) for se S\T,

(e) for T,={seT:0(s) =¢} and T, = T\T,, we suppose that
T, =8 and | 0(s)| (T) =0 for all se T,

(d) po| T is weak* comtinuous.

Then p is an affine mapping aend X} is, in fact, limearly
isometric to {¢#e C(S)*: | | (T) = 0}.

As mentioned above, Gleit assumes in addition that p(s) = 0 for
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all seS. This assumption yields that X, is ordered and X¥ is
an L space in its dual ordering. This will be proved in general in
Theorem 2. For this and other results certain classical types of
Lindenstrauss spaces are recalled.

C(S): the Banach space of all continuous real valued funections
on a compact Hausdorff space S.

Cy(LS): the Banach space of all continuous real valued functions
which vanish at infinity on a locally compact Hausdorff space LS.

A(K): the Banach space of all affine continuous functions on a
compact Choquet simplex K.

Ay(K): the Banach space of all affine continuous functions on a
compact Choquet simplex space K which vanish at a fixed extreme
point of K.

C,(S): the set of all fe C(S) such that f(s) = —f(os) for all
s€ S, where ¢ is a homeomorphism on S such that o is the identity.

M space: the set of all fe C(S) satisfying a fixed set of relations
{s:, si, \;} where s;,si€ S, N €[0,1] and f satisfles f(s;) = \(sj) for all
1 in some index set.

G space: the set of all fe C(S) satisfying a fixed set of relations
{s;, si, \;} where s;, s; arein S, ;€ [—1, 1] and f satisfies f(s;) = N, f(s)
for all ¢ in some index set.

THEOREM 2. Let S be a compact Hausdorff space and p0:S—
C(S)* be an affine mapping. If o(s) = 0 for all se€ S, then X, is an
AyK) space. If po(s) =0 and ||p(s) || =1 for all se S, then X, is an
A(K) space. Conversely, each A(K) and A(K) space can be so
represented.

Proof. Let P be the projection determined by p. Let r be the
restriction mapping from the range N of P onto X*. Then r is a
linear isometry and is clearly positive from N to X} where X has
the dual ordering from the induced ordering on X, from C(S).

Now N is a sublattice of C(S)*. For, if p,v are in N, then
since P is positive, P(#V v) = p¢ Vv and since P is contractive,
He vyl || P(eVy)]|. Thus it follows that g Vv = PVy).
Hence it remains only to show that » is order preserving to establish
that X, is an A,(K) space (see [2]). Let *e X} be positive and
have norm one and let W= {y*e X*: 0 < y*, |[y*|| =1}. Clearly W
is a weak* closed convex set in X}. Let S, be the weak* closure of
the extreme points of W. Since each nonzero extreme point of W
is the image (under restriction) of an extreme point of the unit
sphere of C(S)* and since the positive cone of X, is nonzero, it
follows that S, is contained in the image of {e,:seS}U{0} =S
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under restriction. Now, there is a probability measure £ on S, such
that Sy*(f)d,u(y*) = g*(f) for all fe X, (see [19]) and by [8] there

is a probability measure v on S, such that gfdu = Sy*( Hdpy*) = x*(f)

for all fe X,, where 7 is defined by f(e,) = f(s) and F(0) = 0. Thus
V' defined by v'(4) = v({e,: s€ A}) is a nonnegative measure on S

and Sfdu’ = Sfdv for all fe X, (since f(0) =0). If rPv =z*, then since

Py =0, the proof is complete. But, Sfdv’ = Sfdu = Sy*(f)dy(y*) =
x*(f) for fe X,.

If, in addition, ||p(s)|| =1 for all seS, then 1leX, and it
follows that X, has a strong order unit and so X, is an A(K) space
where K is a compact Choquet simplex.

Conversely, if we are given a simplex space A,(K), then without
loss of generality K = {o*c A(K)*: 0 < «*, ||2*|| <1}. For each
z*e K, let p,. denote the unique maximal probability measure repre-
senting x* (see [21]). It is well known that if S is equal to the
weak* closure of the extreme points of K and p(z*) is the unique
maximal probability measure on S representing z*, o is an affine
mapping and A(K) = X,. Let P be the projection associated with p.
Then it is also well known that kernel P = A(K)' (the reader can
see [1] for a proof of this).

Now, let p(z*) = o(x*) for 2* = 0 and 0(0) = 0. Then 0 is an
affine mapping on S and the associated projection P is given by
Py = p — 1(0)-¢,. From this it follows that the kernel of P is equal
to {g: (¢ — p(0)-e) e A(K)*} = {pe: re A(K)*}. Thus it follows that
X; = A(K).

Let X be a Banach space, V the unit sphere of X*, S the weak*
closure of the set of extreme points of V, and o: V— V be defined
by o(x*) = —x* for all x*e V. The following theorem was also
proved in [1]. The notation is as above.

THEOREM 3. Let X be a Lindenstrauss space. Then 0:S— C(S)*
defined by o(x*) = (1/2)[pt — poo], where pt is a maximal probability
measure on 'V (supported on S) representing x*, is an affine mapping
and X = X,.

Theorem 8 will be used to characterize some of the types of
Lindenstrauss spaces in terms of affine mappings.

THEOREM 4. Let S be a compact Hausdorff space and 0: S — C(S)*
be a weak* continuous affine mapping. Then X, is a C,(S,) space
for some compact Hausdorf space S,. Conversely, any C,(S, space
can be so represented.
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Proof. Let ye C(S)*. Then S fdpe = S fdPy — g Fodgt for all fe X,

Thus S fodp = g £,dPut = g foodp for all feC(S) Since o is weak™
continuous, f, and f,, are in C(S). Thus f, = f,, for all fe C(S)
and X, = {f,: f€ C(S)}. Moreover, the operator @ defined by Q(f) =
fo for feC(S) is a constructive projection of C(S) onto X,. Con-
sequently X, is a C,(S,) space for some compact Hausdorff space S,
by [1].

On the other hand, if X = C,(S,) for some compact Hausdorff
space S,, then the weak* closure, S, of the set E of extreme points
of the unit sphere of X* is either F or E U {0} depending on whether
or not ¢ is fixed point free (see [16]). In particular for se S, and
o(s) # s, (¢,|X)e E. Thus by Theorem 3 the mapping defined by
o(s) = (1/2)(e, — ¢,5,) defines an affine mapping and X = X,. Clearly
o is weak* continuous.

From the definition of an M space, if o: S— C(S)* is any funec-
tion which takes its values in [0,1]S = {Ae,:0 <N <1,5€ S}, then

X, = {fe C(S): f(s) = g fdo(s) for all se S} is an M space.

THEOREM 5. Let X be an M space. Then there ts a compact
Hoausdorff space S and an affine mapping p: S — C(S)* such that o
takes tts values in [0, 1]S and X = X,.

Proof. Let S be the weak* closure of the set E of positive
extreme points of the unit sphere of X*. It is well known that
each element z* ¢S is of the form M\y* with y*e K and 0 <A <Z1
[9]. Moreover this representation is unique if «* + 0. Thus p(x*) =
\ée,. defines an affine mapping and X, = X (see the proof of Theorem 2).

Similarly, if o: S— C(S)* takes its valuesin [—1,1]S = {xe;: —1 Z
VE1,5eS), then X, = {fe C(S): fs) = Sfdp(s) for all se S} in a G
space. On the other hand, if X is a G space and S is the weak*
closure of the set E of extreme points of the unit sphere of X*,
then Fakhoury has shown in [3] that Sc[—1,1]E. Thus for any
z*e S, 2* = ay* + A — a)(—y*) for some 0 < a <1and y*c E. More-
over, p = as, + (1 — a)e_,. is a maximal measure representing z*
and (1/2)[¢t — poo] = (1/2)[RQa — 1)e,» + (1 — 2a)e_,.] = o(x*) defines an
affine mapping with X = X, by Theorem 3.

If S is a compact Hausdorff space, then p defined by p(s) = e,
is clearly an affine mapping and C(S) = X,. On the other hand, if
LS is a locally compact noncompact Hausdorff space, then the weak*
closure S, of the set E of positive extreme points of the unit sphere
of C(LS)* is E U {0}. Clearly S, can be thought of as S U {0} since
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E is homeomorphic to S. Let o(s) = ¢, for se€ S and p(0) = 0. Then
as in Theorem 5, o is an affine mapping and X, = Cy(LS).

THEOREM 6. Let S be a compact Hausdorff space and p:S-—
C(S)* be a positive weak* continuous affine mapping. Then X, is a
C(LS) space.

Proof. By Theorems 2 and 4, X, is simultaneously a C,S,)
space and an A,(K) space. Thus by [16] X, is a C,(LS) space for
some locally compact Hausdorff space LS.

Open questions. The results in this paper are in the isometric
theory of Banach spaces. It is natural to ask about the isomorphic
theory. The isomorphic analogue to a Lindenstrauss space is a &2,
space. A Banach space X is said to be a &2, space if for each
finite dimensional subspace Y of X there is finite dimensional sub-
space Z of X with Y Z and d(Z, l.(dim Z)) = inf {||T|||| T*||: T: Z —
l.(dim Z) is 1-1} < .

Using proofs similar to those in [1] one can show that is F' is a
compact Hausdorff space and 0. S C(S)* has the properties of an
affine mapping except that we only assume that sup]|o(s) || < oo
instead of || o(s)|| =1 for all seS, then X, is an &2, space.

Question 1. Is it possible to construct each <2, space from
such a mapping?
Another question which is well known is the following.

Question 2. Is every &, space isomorphic to a Lindenstrauss
space? Recently, Benyamini and Lindenstrauss [21] have shown
that there are separable Lindenstrauss spaces X and Y such that
X* is separable and Y* is nonseparable and both X and Y are not
isomorphic to a complemented subspace of a C(S) space.

Some questions which arise in the isometric theory are discussed
below. Let S be a compact Hausdorff space and X c C(S) a closed
linear subspace containing 1. Suppose further that {seS:¢,| X is an
extreme point of the unit sphere of X*} = 0,S is dense in X. Then
X = A(K) where K= {z*eX*:2*(1) =1 = ||«*|]} has the weak*
topology and the extreme points of K are homeomorphic to ¢S and
their closure is homeomorphic to S. In particular, each maximal
measures on K is supported on S.

Question 3. Is there an affine mapping p of S into the maximal
measures on K such that o(s) = ¢, if and only if s€9,S?
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In [20] Rao has shown that there is a Borel measurable mapping
when S is metrizable metrizable.
This is related to the following question.

Question 4. If S is a metrizable compact Hausdorff space and
Tc S is a dense G; set, is there a compact Choquet simplex with
extreme points homeomorphic to 7 and their closure homeomorphic
to S?

Let X< C(S) be as above. It is shown in [6] that if X is a
Lindenstrauss space, then X is maximal with respect to 0,S. That
is, if Xc Y and 0,S = 0,8, then X =Y. An easy application of
Zorn’s lemma shows that for any such X < C(S) there is a maximal
Y o X with respect to 0,S.

Question 5. Is any X maximal with respect to 0,S a Linden-
strauss space?
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