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Let T be a positive linear contraction on an L'-space and
ki, ks, - -+ an increasing sequence of positive integers. In this
paper the almost everywhere convergence of Abel averages
e, rhTrf| > = vk for the sequence ki, ks, --- as r T 1 is
investigated.

In [3], A. Brunel and M. Keane defined uniform sequences for
increasing sequences of positive integers and proved that if ¢ is a
measure preserving transformation on a finite measure space then
for any uniform sequence k&, k,, --- and for any integrable function
f» Cesaro averages of f(¢*.) converge almost everywhere. The author
[13], [14] has recently generalized and extended this result to one at
the operator theoretic level. On the other hand, the work of G.-C.
Rota [11] suggests that it would be of interest to consider the almost
everywhere convergence of Abel averages for wuniform sequences.
These are the starting points for the study in this paper.

2. Main results. Let (2, <&, m) be a o-finite measure space
with positive measure m and L?(Q) = L*(Q, &Z,m),1 £ p £ , the
usual (complex) Banach spaces. Let T be a positive linear operator
from L'2) to LYQ) with |[T||,=< 1. We shall say that the Abel-

individual ergodic theorem holds for T if for any uniform sequence
ki, k., + -+ (for the definition, see [3]) and for any fe L'(2), the limit

o) = tim T2 (@)
rii

oo ks
i=1 T

exists almost everywhere and fe L'2). The main results of this
paper are the following two theorems.

THEOREM 1. If T maps, in addition, L*(Q) into L*(Q) for some
p with 1 <p< e and ||T|, <1, then the Abel-individual ergodic
theorem holds for T.

THEOREM 2. If there exists a strictly positive function he L' Q)
such that the set

{(1 — )P T 0 < 7 < 1}
k=0

18 weakly sequentially compact in LN2), then the Abel-individual
ergodic theorem holds for T.
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In §4 it is proved that if T maps, in addition, L=(2) into L~(2)
and [|T|l. <1, then the Abel-maximal ergodic theorem holds for T;

i.e., for any uniform sequence k, k., --- and for any fe L?(2) with
1 < p < o, the function f* defined by

F*(@) = sup . i T f(w) |

© kb
0<r<1 i=1 T

belongs of L?(2). The last section is concerned with point transfor-
mations from Q2 into 2. A necessary and sufficient condition that a
measure preserving transformation on a probability space be weakly
mixing is given in terms of Abel-ergodic limits.

3. Proofs of the main theorems.

3.1. Proof of Theorem 1. Our proof is similar to that given in
[14]. Let k, k,, --- be a uniform sequence, and let (X, 27, ¢, ) and
9, Y be the apparatus [3] connected with this sequence. @ will denote
the operator on L'(X) induced by ®. Taking (', &£’, m’) to be the
direct product of (2, &2, m) and (X, 27, ¢) and T” the direct product
of T and @, it follows that 7" is a positive linear operator from L'(2’)
to L'(2') and || T"||, = 1. Since || T||, = 1 by hypothesis, it also follows
that 7' maps L*(2') into L*(2') and ||T'||, = 1.

Suppose first that fe L'(Q) N L*(2) and f = 0. As in [3], for any
fixed ¢ > 0, choose open subsets Y’, Y” and W of X such that
YCcYCcY', m(Y"—Y)<eye W, and for any € W and any
n =0,

Ly (") = 1;(P™y) = 11 (P™w) «
Define

9(@, 2) = f(@)1y(2) ,
9" (@, x) = f@)1;.(v)

and
9" (0, x) = f(w)ly.(2) .

Since every Cesaro summable sequence is Abel summable (see, for
example, [16, Chapter III]), it follows from [1] that

F(©, ) = lm @1 — 1) 3, r T (o, 2)
rfl k=0
and

§'(@, ) = lim (1 — r) 3, 7T (o, 2)
rfl k=0
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exist and are finite almost everywhere. Clearly §’ and §” belong to
L?(2'). It also follows from Cohen’s mean ergodic theorem [7] that

lim (1 — 7) gr"T”‘g’ — g, =0
and
li}ﬂ”(l —7) kgo'r"T”‘g” —0'1l,=0.
Put
S() = limsup (1 — 7) 3, r* I/ (@)L+(#*0)
and

s(@) = liminf (1 — 7) 3 P T4 A(w) 1, (P4y) -
rt1 k=0
Since T is positive, it follows that
7w, x) < s(w) = S(w) = 7", 2)

almost everywhere on 2 x W. Thus for any Q, ¢ &Z with m(2) < o
we have

[, (8@) = s@)im()
= 1), (S@) = s@)dm' (@, o)
< puwy|, @ - @) dm
=M lim | (1= 0 5 E T ()i o, )
< u(WIFIL lim @ = 1) 3 e (9 a)dp()

= e[|l -

Since € > 0 is arbitrary, this demonstrates that S(w) = s(w) almost
everywhere on 2,. Since (2, &, m) is a o-finite measure space, we
conclude that

S(@) = lim (1 — 1) 5, P T*(@) (")
= lim (1 - 7) 2 74 T f(w)

exists and is finite almost everywhere. On the other hand, it is known
[3] that
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132%——- ©(Y),

from which it follows that

lim (1 — 7) 2%‘ = mY).

r11

Therefore,

Zw) = lim e M T S (@)
fl@) = lim T

i=1

i (L= ) S T ()
11 A =7 >z, rk

exists and is finite almost everywhere.
Next suppose that fe L'(2). It can be easily seen that

oo ki ks
Sup =1 r T f((l)) < oo

oo )2
0<r<1 =1 T

almost everywhere. Since LY(Q) N L*(Q) is dense in L'(2) in the norm
topology and for almost every we 2 the series >, 7% T%f(w) has at
least unit radius of convergence as a power series in 7, it follows
from the Banach convergence theorem [8] that for any fe L(Q), the
limit

F) = tim ST @)
rii

oo kg
= T

exists and is finite almost everywhere. Fatou’s lemma implies now
that fe L'(2). This completes the proof of Theorem 1.

3.2. Proof of Theorem 2. If we define an integrable function
K on 2 =02 x X by W(w,z) = o), then the set

{(1 SRS T 0 < 7 < 1}

k=0
is weakly sequentially compact in L'(2"). Thus Cohen’s mean ergodic
theorem [7] implies that there exists a function ¢’ in L'(2") such that
T'g’ = ¢’ and

lim “(1 — R ST — g
rt1 k=0

|1=0.

Clearly ¢’ = 0. Let us denote A’ = {(w, 2)c2; 9 (w,x) =0}. We
shall first prove that A’ coincides with the dissipative part [5] of T".
In fact, since ¢’ is invariant under 7", it follows at once that 7"*1, <
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1, where 7"* denotes the corresponding adjoint operator on L'(2)* =
L=(2'). Hence if we define B’ = A’ N C’, where C’ denotes the con-
servative part [5] of 7", then T"*1, = 1, on C’. Thus
Sh'lB,dm’ < lim g(l — ) SR (T, dm
r{1 k=0
= lim S[a —n) S T’kh’]lB,dm'
r11 =0
= §g'13,dm' =0.
Since &’ is strictly positive, it follows that m'(B’) = 0. Consequently
A'c 2 — C'. On the other hand, it is clear that A’ > Q2 — C.
Let f’ be any function in L'(2'). It follows that
Flo, %) = lim (1 — 7) ki T (@, %) = 0
rtl =0

almost everywhere on A’. On the other hand,

P, z) = li¥n Q- ,,20 r* T f(w, x)

. = lekfr(w x)
= g'w, z) lim SE? 2
g0, o) ri1 S, T T (W, @)

exists and is finite almost everywhere on £’ — A’, since the right
hand side of the last formula exists and is finite almost everywhere
on & — A’ by the ergodic theorem of Biez-Duarte [2]. This together
with the fact that the average

(1 - ,,.) ki: ,rkTrkf/

converges in the norm of L'(2) to a function in L'(2) as r | 1,
which may be proved by a slight modification of an argument in
[10], implies that

1}31“(1 — ) 3 T — f“ 0.

Therefore, an argument analogous to that in the proof of Theorem
1 is sufficient to prove the present theorem, and we omit the details.

4. The Abel-maximal ergodic theorem. Throughout this sec-
tion it is assumed that 7 maps, in addition, L~(Q) into L=(2) and
I Tll. < 1. It follows from the Riesz convexity theorem that 7 maps
L*(©) into L*(2) for each p with 1< p <« and ||T|[,=<1. Let f
be a function in L?(2) and a > 0. Following R. V. Chacon [4], we
define
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(@) = [sgn f(®)] min (a, |f(@)]) ,
feH (@) = [sgn f(@)](|f(®)| — min (a, [f(@)])

and

E*(a) = {co; sup |(1— 7) ér"T"f(w)l > a} ,

0<r<1

where sgn f(®) = f(w)/| f(w)] if f(w) %= 0 and sgn f(w) = 0 if f(w) = 0.
The following lemma is the Abel-analogue of Chacon’s maximal
ergodic lemma [4].

LEMMA. If 1< p < and fGL”(.Q) then for each a > 0 we have
SE*(u)(a - [f“‘(a)) Ndm(w) = Slf‘”'(a)) |dm(a)) .

Proof. It may and will be assumed without loss of generality
that f is a nonnegative function. Let we E*(a). Then it follows
that supec,<, S ™(T* f(w) — a) > 0. Hence there exists a positive
real » with r < 1 and an integer n = 0 such that

éo P(T* f(@) — @) > 0
and
gr"(T"f(a))—a)§0 for 0<j<n.
But this implies [2] that

1 n
— > Tt f(w .
P 2 T f(@) > a
Hence Chacon’s maximal ergodic lemma [4] completes the proof of
the present lemma.

THEOREM 3. If 1< p < oo, feL?(Q) and ki, k., -+ is a uniform
sequence, then the function f* defined by

frw) = sup [ SR

0<r<t e, ki

belongs to L*(Q).

Before the proof we note that the positivity of T is not necessary
in this theorem. This follows from [6].

Proof. It may and will be assumed without loss of generality
that f is a nonnegative function. Since
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lim(l~1‘)2'r’°i: wY)y>o0,

rt1

it suffices to prove that the function A* defined by
@) = sup (1 — 1) 3, 7T (@)
0<r<1 k=0

belongs to L*(2). But it follows easily from the previous lemma that
for each a > 0,

a

mh* > a) < 2| | fidm < oo .
a Jir*>a}
Thus Theorem 2.2.3 in [9] completes the proof of Theorem 3.
Using Theorem 1, it may be readily seen that for any uniform
sequence k,, k,, --- and for any fe L*?(2) with 1 < p < o, the limit

fN(w) = lim > T f(w)

T I Tk

exists and is finite almost everywhere. This together with the above
theorem implies at once the following Abel-mean ergodic theorem.

THEOREM 4. For any uniform sequence k., k, +-- and for any
feL*(Q) with 1 < p < o, we have

bod ki ks ~
Zz=1/" Tf ___f

lim —
i=t T

r11

=0,
»

5. Applications to point transformations.

THEOREM 5. Let ¢ be a point transformation from 2 into 2 such
that ¢ Ae B if AcF and m(p4) = 0 if m(A) = 0. Suppose
there exists a constant K such that

0 < lim sup % S mg+A) = Km(A)
n k=0

for every measurable set A of positive measure. Then for any uniform
sequence k., k., --+ and for any fe L*Q) with 1 £ p < o, the limit

(1) Flw) = lim 2= T (00)

rii orki

exists almost everywhere and fe L*(2).

Proof. It follows from [12] and [15] that there exists a o-finite
measure v on (2, £&) such that
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(a) v(4) £ K*m(A) for all Ae Z;

(b) v(A) = m(A) for Ae £ with A = ¢7'4;

(e) v(A) =0 if and only if m(4) = 0;

(d) v is invariant under ¢.
Therefore, if fe L?(2, &, m) then, by (a), fe L*(2, &, v). Since ¢ is
y-measure preserving, it follows from the previous arguments that
the limit (1) exists and is finite v-almost everywhere. This together
with (¢) implies the m-almost everywhere convergence of (1). To
prove that fe L*(Q, <&, m), it suffices to show that for any nonnega-
tive function f in L*(2, <&, m), the function % defined by

h() = lim (1 — ) S, Hf(gto)

belongs to L*(Q, &%, m). But, Nclearly, heL*Q, <#,v) is invariant
under ¢, and hence (b) implies & € L*(2, <&, m). The proof is com-
plete.

From now on it is assumed that (2, <#, m) is a probability space
and ¢ is a measure preserving transformation on (2, &, m). The
transformation ¢ is called ergodic if Ae.<Z and ¢7'A = A imply
m(4) = 0 or m(4) = 1; weakly mizing if for each pair A, Be <#, we
have

lim % kz; |m(g~*A N B) — m(A)m(B)| = 0 ;

strongly mixing if for each pair A, Be <%, we have

lilzn m(¢~*A N B) = m(Aym(B) .

THEOREM 6. For a measure preserving transformation on a prob-
ability space (2, <&, m), the following three statements are equivalent:

() ¢ is weakly mixing.

(B) For any uniform sequence ki, k,, -++ and for any fe L'(Q),
we have

(2) Flw) = S fdm almost everywhere .

(v) For any uniform sequence k,, k,, -++ and for any fe L'(Q),
we have

(3) lim || ZELSEO) A || ~ 0.

11 ;';1 ki

Proof. (a) implies (8): In the proof of Theorem 1, if we define
the measure preserving transformation ¢ on (2', &', m') by
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¢’((I), .'X)) = (¢w9 ‘7)90) ’

then («) implies that ¢’ is ergodic (cf. [3]). Hence for any nonnega-
tive function fe L'(2) we have

lim (1 — ) 5 (@)L (e's) = (V)| fam
and
lim (1= ) & @)L (#'a) = p(Y")|fdm

almost everywhere with respect to m/, from which (8) follows im-
mediately.

(B) implies (v): Obvious.

(v) implies («): Suppose that (v) is true but ¢ is not weakly
mixing. Then there exists a bounded function f in L*®) such that

£l = L\ fdm = 0, f(¢w) = cf(w) almost everywhere for some con-
stant ¢ with |¢] = 1. Define a uniform sequence k,, k,, - - - recursively
as:

k, = min{j = 1; —7/4 < arg (¢) < 7/4},

k,=min{j > k,_; —n/4 < arg (¢’) < n/4} .

It follows that for each positive real » with » < 1,

Re [ L0 610) ) — o (ZEare)

o ki 173
i:l/r * .;:17' K

_1

vV'2

Since f is bounded, this contradicts our assumption, and hence ¢ must
be weakly mixing. This completes the proof of Theorem 6.

%
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