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This paper is concerned with the dilation, in the case of
a Banach space, of operator-valued functions on a group into
representations. Banach-space analogues of Sz.-Nagy’s theorem
and Ando’s theorem are obtained.

Throughout this note Z (resp. R, resp. R*, resp. N, resp. C) is
the set of all integer (resp. real, resp. nonnegative real, resp. non-
negative integer, resp. complex) numbers. Also G is a group, e¢c G
its neutral element: K: G — Rt a submultiplicative function (i.e.,
K(gh) < K(g)K(h) for all g, he G) with K(¢) = 1; X a Banach space;
#(X) the Banach algebra of all linear bounded operators on X and
Ie &Z(X) the identity.

& ™R) (me N, m = o) being the algebra of all m-times differenti-
able functions on R with the usual topology and I" = {z € C; |z| = 1},
&™) is the algebra of all functions f:7"— C such that t— f(e®)
belongs to #™(R), endowed with the topology induced by Z™(R).
An operator Te c#(X) is called & ™(I')-unitary if it is &™(I")-scalar

(121, [4D.

THEOREM. (See also [7] Theorem 1). Let ¢: G— Z(X) be a
Sunction with the property || ¢,|| =< K(g) for all ge G and ¢, = I.

Then there exists a Banach space X containing X (by an isometric
isomorphism), a norm one projection P of X onto X and a represen-
tation ¢ of G as a group of invertible operators on X such that

(0) VK™ £ ||¢,]| £ K@) for all yeG and ¢, = I.

(i) Pé¢,x = ¢, for any veG.

(ii) X is the closed vector space spanned by {,7;ve G, xec X}.

(iliy If ¢ takes its values from the set of contractions on X,
then G is represented by ¢ as a group of invertible isometries on X.
Moreover, if G is a topological group and for every z e X, the func-
tion g — ¢, x is left uniformly continuous, then the representation ¢
is strongly continuous.

Proof. Let Y be the vector space of all X-valued functions on
G, y(.) with the property

ly(@) || = MK(g) for all geG,
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where M is a positive real constant and K the submultiplicative func-
tion from the hypothesis. (In what follows we shall denote elements
of Y also by (¥,),c¢.) One sees easily that Y endowed with the norm

Ny() 1 = sup lly(9) [|1K(9)~", is a Banach space .
Let X = @,.;, X* be the direct sum with X? = X for all geG.
Define a map 6: X® — X by (Oy), = >\ ¢,1Ys for all ge G and ye X©.
Then for every ye X'® one has @ye Y and the set X = {0y; ye X@)
is a subspace of Y. Consider the closure of X in Y and denote it
by X.
Now let X, be a subspace of X of elements

Y(.) = ($,8)ye6 = (Z161001%),c¢ When o runs over X
(6,, =0 for g+ h and §,, = 1 for g = h). Define a map
P: X, —~X by @w(.) =yl for all y(.)eX,.

Then one has
PN = lly@) ] = syplly(g)llK(g)”‘ = [ly()l

and
Hy() Il = SlglpIIsﬁgﬂvllK(g)‘1 = llzll = lly@ 1l .

Hence ® is an isometric isomorphism of X, onto X.

Let Q: X — X be a map defined by

Qy(.) = yle) for all y(.)eX.

Obv1ous1y, Q is linear surjective and satisfies ||Qy(.)|| = ||y(. )[| for
all y(.)e X. Its extension by continuity to a linear map of X onto
X will be denoted by the same symbol. Then ®7'@Q is a norm one
projection of X onto X.

For every ve G, define a map ¢,: X — X by

€$7@y = ((@y)gr)nea = (Zh¢p7’hyh)ﬂ€(; = (Zd¢gdzd)g<-:6' = 6ze X

when y runs over X“. (It is made the notation d = vk, z; = ¥, for
all he G; hence z with these components belongs to X‘©.) One sees
easily that 4, is well defined and linear. Moreover, one has

1,0y = sup || £ig,mys [ K(9)™
= sup | 2 orathn || K(97) " K(9) " K(g7)
= K() sup | Z4borntn || K(g7)™ = KM)||Oy]| .
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That is
(1) 13,0yl £ KM)||0y]|  for all yeX®,

Then ¢, can be extended by continuity to an element of < (X) which
will be denoted by #,. One sees easily that ¢, = 8.4, for all @, ge G
and 4, = I. Moreover,

(2) 116yl £ 11§40yl < K |$,0y| for all ye X .
Also ¢,: X — X is surjective since one has
Oy = $,((0Y),;~),ec for all yeX® and veG.
Thus the property (0) is proved. To show (i) we see that
(@' Q)P (x) = ¢~'(p,¢) for all xeX and veG@G.

Identifying X, and X via @ and writting P instead of #'Q, this
equality reads more naturally as P¢,IX = ¢,. The property (ii) is im-
mediate noting that every Oyec X can be written Oy = 3,6, 27 (y,).
The first assertion of (iii) is immediate because taking K(g) = 1 for
all ge G, the above inequalities (1) and (2) become

(3) [14,0y] = ||6y]|| for all yeX“® and veG.

To prove the second assertion of (iii) we assume still that G is a
topological group and ¢g-— ¢,x is left uniformly continuous for each
2z€ X. Taking into account of (ii) it is enough to show that for any
fixed v € G and y(.) € X,, the map @ — ¢,(3,¥)(.) = ($.¥)(.) is continu-
ous. As this map is the composition of @ — avy and av — (. 7¥)(.),
we need only show that for each y(.)e X,, the map a— ($.%)(.) is
continuous. For this it is sufficient to show the continuity at a = e.
But this fact is immediate from the left uniform continuity of g — ¢,2
for every we X, because ||($.u)(-) — u(.)|| = sup, 6,.() — 6,5(@) -

COROLLARY 1. Let {T},cxr < #(X) be a semigroup of contrac-
tions. Then there exists a Banach space X containing X, a morm
one projection P of X onto X and a group {Ul,.r of invertible iso-
metries on X such that:

(i) PUx = T\, for all xe X, teR.

(ii) X is the closed vector space spanmed by

{Um;te R, xe X} .

(i) If {T,}ier+ is strongly continuous, them {U}lier 1s also
strongly continuous.
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Proof. Taking G = R, the additive group of real numbers defin-
ing ¢ by ¢, = T, and K by K(t) = 1, for any te R, we are in as-
sumptions of the previous theorem.

REMARK 1. An invertible isometry is a <« ™(I")-unitary operator
with m > 1, ([2], Proposition 5.1.4). Hence Corollary 1 can be under-
stood as a Banach space analogue of Sz.-Nagy’s theorem ([9]) about
of the dilation of a semigroup of contractions into a group of unitary
operators.

COROLLARY 2. (See [9], Theorem IV). Let Te <z (X) be a con-
traction. Then there exists a Bamach space X containing X, a

norm one projection P of X onto X and an invertible isometry U on
X such that:

(i) BU”m = Tz, for all xc X, necZ.
(i) X s the closed vector space spanned by

{(Ure;neZ,ze X) .

Proof. Obviously, for this case one takes G = Z the additive
group of integer numbers, ¢ defined by ¢, = T'*' and K by K(n) = 1,
for all ne Z.

COROLLARY 3. Let {T, T;, ---, T,} © <& (X) be a finite system of
not necessarily commuting contractions. Then there exists a Bamnach
space X containing X, a morm one projection P of X onto X and a

JSinite system of commutative invertible isometries {U,, U, +++, U} on
X such that:

(i) PUMUp2 oo Uppx = TMIT™ oo Trox
Sfor any
Ny Noy =+, Np€Z, X .
(i) X is the closed vector space spanmned by

{UMUpz oo Urrs; myy Mgy +++, M€ Z, € X} .

Proof. We take G =2, %X Z, x -+ X Z, with Z;=Z for ¢ =
1,2, ..., p; define ¢ by ¢(n, ny, ++-, n,) = T\m T oo T and K by
K(n, ny +++,n,) = 1 for any n,, n,, ---, #,€ Z, then apply the above
theorem.

REMARK 2. Corollary 3 is a Banach space analogue of Ando’s
theorem ([1]). We remark that it is not necessarily to assume any



ISOMETRIC DILATIONS OF CONTRACTIONS ON BANACH SPACES 261

property of commutativity also we can take a number of more than
two contractions, (in a Hilbert space this is not true, see [5]).

REMARK 3. The above theorem also asserts that for any sequence
{T bnez © Z (X) of contractions with T, = 1, there exists a Banach space
X > X, a norm one projection P of X onto X and a invertible isometry
U on X such that T, = PU", for any neZ. Also X is the closed
vector space spanned by {U"x; ne Z, x€ X}. (This fact is true in a
Hilbert space if and only if T, is a positive definite sequence.)

COROLLARY 4. Let {T\},cr+ € & (X) be a semigroup of operators
such that || T,|| £ Me* (resp. | T,|| < t*+ 1, with 0 < a = 1) for all
te R*, where a and M are real positive constants. Then there ewists
a Banach space X > X, a norm one projection P of X onto X and a
group of invertible (resp. & ™(I')-unitary with m > « + 1) operators
on X, {U},cr such that:

(0) M~'e < ||U,|| < Me*™ for all teR, if M > 1, or e*
Ul = e forallte R, if M <1, (resp. ([t]*+ 1) <[ Ul < [¢]* +
for all te R).

(i) PUz = T,o for all teR, € X,

(ii) X s the closed vector space spanned by {Um;te R, xe X}.

<
1

Proof. Taking G = R the additive group of real numbers, defin-
ing ¢ by ¢, = T}, for all te R and K thus: if M > 1, K(t) = Me*'¥
for t + 0, and K(0) = 1; or if M < 1, K(t) = ¢**' for £ # 0 and K(0) = 1,
(resp. K(t) = |t|*+ 1 for any te R), we have the hypothesis of the
theorem.

Moreover, for the second case we obtain
Ul = [[(UY"]| = [n](]* + 1)

for all |[»| > 1,te R. Then applying Proposition 5.1.4 from [2], it
follows that U, is a & ™(I")-unitary operator with m > « + 1, for each
te R.

COROLLARY 5. Let Te 2 (X), satisfying ||T"|| £ n*+ 1 for all
ne N, with 0 < a < 1. Then there exists a Banach space XD X, a
norm one projection P of X onto X and a & ™(")-unitary operator,
with m > a + 1, U on X such that:

(0) (ml*+ D=0 = nl*+ 1 for all neZ.

(i) PU™» = T2 for all neZ, zecX.

(ii) X s the closed vector space spanned by

{Ure; neZ, xe X} .
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