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An abstract measure algebra A is a Banach algebra of
measures on a locally compact Hausdorff space X such that
the set of probability measures in A is mapped into itself
under multiplication, and if μ is a finite regular Borel measure
on X and μ << veA then μe A. If A is commutative then
the spectrum of A, ΔA, is a subset of the dual of A, A*, which
is a commutative I^*-algebra. In this paper conditions are
given which insure that the weak-* closed convex hull of JA,
or of some subset of ΔA, is a subsemigroup of the unit ball
of A*. This statement implies the existence of certain byper-
group structures. An example is given for which the condi-
tions fail.

The theory is then applied to the measure algebra of a
compact P*-hypergroup, for example, the algebra of central
measures on a compact group, or the algebra of measures on
certain homogeneous spaces. A further hypothesis, which is
satisfied by the algebra of measures given by ultraspherical
series, is given and it is used to give a complete description
of the spectrum and the idempotents in this case.

A hypergroup is a locally compact space on which the space of
finite regular Borel measures has a commutative convolution structure
preserving the probability measures. The spectrum of the measure
algebra of a locally compact abelian group is the semigroup of all
continuous semicharacters of a commutative compact topological semi-
group (Taylor [7], or see [2, Ch. 1]). In this paper we consider the
spectrum of an abstract measure algebra and investigate the question
of whether the spectrum or some subset of it has a hypergroup
structure.

Section 1 of the paper contains a general theorem on the existence of
hypergroup structures on the spectrum of an abstract measure algebra.
The fact that the dual space of an appropriate space of measures is
a commutative TF*-algebra is of basic importance in the proof of this
theorem. This section also contains an example of a compact hyper-
group whose measure algebra does not satisfy the hypotheses of the
theorem.

In §2 we recall the definition of a compact P*-hypergroup from
a previous paper [1] and apply the main theorem of § 1 to this situa-
tion. The result is that the closure of the set of characters of the
hypergroup in the spectrum is a compact semitopological hypergroup
and is a set of characters on another compact semitopological hyper-
group.
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Section 3 defines a class of P*-hypergroups of which ultraspherical
series form a particular example. A complete description of the
spectrum and the idempotents of the measure algebra is given. The
results are much like those which Ragozin [6] obtained for the algebra
of central measures on a compact simple Lie group.

l The general situation* We will use the following notation;
for a locally compact Hausdorff space X, CB(X) is the space of bounded
continuous functions on X, C0(X) is the space {feCB(X):f tends to
0 at oo}, M(X) is the space of finite regular Borel measures on X, MP(X)
is the set {μeM(X): μ ^ 0, μX — 1} (the probability measures), dx is
the unit point mass at xeX, and ikf(X)* is the dual space of M(X).
If X is compact we write C(X) for CB(X). We let w* denote either
of the topologies σ(M(X), C0(X)) or σ(M(X)*, M(X)).

Note that M{X)* may be interpreted as the space of generalized
functions on X, (the protective limit of the spaces {L°°(X, μ): μ e MV(X)}
ordered by absolute continuity) and is thus seen as a commutative
T7*-algebra (see [2, p. 9]). We will write / - > / ( / e I ( I ) * ) for the
involution, f μ for the action of Λf(X)* on M(X), and (μ, /> for
the pairing of M(X) and M(X)*, (μ e M(X),fe M(X)*). Note </ -μ,g} =

<β,fg} for /, geM(X)*,μeM(X), and <β, 1> = ( dμ. The unit ball
Jx

B (the set {/: | | / | | ^ 1}) of M{X)* is w*-compact and is a commuta-
tive semitopological semigroup under multiplication and the w*-topology.
We will be concerned with compact convex subsemigroups of B.

Suppose there is given for each x, y e X a measure X(x, y) e MP(X)
such that for each/6 C0(X) the map (x, y) κ+ 1 fdxlx.y) is separately

Jx
continuous. Then for each μ9 v e M(X) the function

α? i—> \ \ fd\(x, y)dv(y)
JxJx

is continuous and

( dμ(x)\ dv(y)\ fdX{x,y) = \ dv(y)\ dμ(x)\ fdX{x,y) .
Jx Jx Jx Jx Jx Jx

This fact was proved by Glicksberg [3]. We will use this to define
semitopological hypergroups.

DEFINITION 1.1. A locally compact space H is called a semi-
topological hypergroup if there is a map λ: H x H-+MP(H) with the
following properties:

(1) X(x, y) = X(y, x), {x, yeH), (commutativity);

(2) for each fe C0(H) the map (x, y) i-> I fdX(x. y) is separately
JH

continuous, (α?, yeH);
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(3) the convolution on M{H) defined implicitly by

f fd(μ*v) = ( dμ(x)\ dv{y)\ f<h.(x,y)9(μ,veM(H),feCo(H))

is associative, (note δ9*δv = X(%, y), {x, yeH)).
If there is a point eeH such that λ(e, x) = δm9 (xeH), then e is

called the identity of H. A bounded continuous function φ on H such

that l φdx(x,y) = Φ(x)Φ(y), (x.yeH), is called a character of ff

If i ϊ is a compact semitopological hypergroup then it is easily
shown that convolution on M(H) is separately w*-continuous, and
that MP(H) is a compact commutative semitopological affine semigroup
("affine" means μ*(8tvL + s2v2) = st{μ*v^ + s2(μ*v2) for ^ , δ2 ^ 0, sx +
s2 = 1, /i, v1? y26Mp(Jff)). The converse to the latter holds (Pym [4]
proved a form of this statement; we will give a proof of it in the
present context).

PROPOSITION 1.2. Let H be a compact space and suppose MP(H)
is a commutative semitopological affine semigroup (in the w*-topology),
then H can be given the structure of a compact semitopological hyper-
group, so that convolution restricted to MP(H) gives the original semi-
group structure.

Proof. Let * denote the semigroup operation on MP(H). This
operation extends uniquely to M(H), and M(H) becomes a commuta-
tive Banach algebra. For each x,yeH let X(x,y) = δx*δyeMp(H).
Now we must show that λ satisfies Definition 1.1, and the convolution
induced by λ is the same as the given By hypothesis, the function

S r
fd\(x, y) — 1 fd(δx*dy) is separately continuous (x, y e H).

Glicksberg's result [3] shows that x H* \ Tf(x9 y)dμ{y) is continuous
JH

for each μ e M(H). Let μ,v be finitely supported (discrete) measures
in MP{H), then by an easy computation we have

( Tf(x,y)dμ(x)dv(y) = \ fdμ*v , (feC(H)) .

For fixed v the set of μ for which this identity holds is w*-closed
Thus the identity holds for all μeMp(H), all finitely supported ve
MP{H). Repeat the argument to show the identity holds for all
veMp(H).

It is convenient to isolate the following situation as a lemma.
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LEMMA 1.3. Suppose X is a locally compact space, S is a com-
pletely regular Hausdorff space, and there is a bounded linear map
j : M(X) —* CB(S) with the following properties (we will write \\μ\\s

for sup{|iμ(s)|: seS}:

(1) llill = i;
(2) there exists c e MP(X) such that jc — 1 (the constant function))
(3) \\jχS- μ\\s ^ II μ I Is, where j\seM(X)* is defined by <μ,.?» =

jμ(s),(seS,μeM(X)).
Then the w*-closed convex hull of j\S, denoted by w* co OΊS), is

a compact (seviitopological) subsemigroup of B, the unit ball in M(X)*.
Each map f ι—> (δx, />, (xe H), is an a fine semicharacter on w* co (JiS).
Further, if S is compact and jM(X) is sup-norm dense in C(S), then
S has a semitopological hypergroup structure, and the functions
{jδx: xe X) are characters of S.

Proof. Let S, be a compactiίication of S such that jM(X) c
and let j * denote the adjoint map: M(SJ-+M(X)*,

given by <μ,j*X) = ( jμdx, μ e M(X), X e M{Sλ)

Denote w* co (j\S) by Sc. We claim j^M^S,) - Sc. The map j * is
t(;*-continuous MiSJ —> M(X)* thus j * maps w* co {ds: s e Ss) (in M(S1))
into Sc. That is, j^M^S,) c Se. Conversely let feSc, then there
exists a net {fa} c co (j\S), (the convex hull of j\S) so that fa -^-»/(w*)
But for each a there exists a finitely supported Xa e Mp(Sι) so that
j*χa == fa% By the w*-compactness of M^S^ there exists λ e Mp(Sj)
so that i*λ - /. Thus j*Mp(SJ - Sβ.

We observe for g e M(X)* that geSc if and only if \(μ,g}\^
\\μ\\s, (μeM(X)) and <r, g} = 1. The latter condition and the Hahn-
Banach and Riesz theorems imply that there exists λ e Mp(Sλ) so that
i*λ = g. We now show for s e S, λ e ^(SO that (j\s)(j*X) e Se. Indeed
for μeM(X), \

<μ,<j\s)(j*\)}\ = | 0 > jM*λ>|

| ^ | b > . ^ | | s ^ \\μ\\s.

Also <<r, 0»0'*λ)> = OΊίW, i*λ> = <r, i*λ> = 1, (note ^s r = ί, since
\\j\s\\ S 1, < ,̂i!S> = jc(s) - 1 and ceMp(X)). Thus 0»(i*λ) eS c and
we conclude from the separate w*-continuity of multiplication that
SCSC c Sc; so Sc is a subsemigroup of 5.

For each xeX,feM(X)* we have that f-dx - (δx, f)δx so the
maps f^(δx, /> are affine semicharacters of SU
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Now suppose that S is a compact and jM(X) is norm dense in
C(S). Then j * maps MP(S) one-to-one, w*-continuous, and onto Sc.
Thus MP(S) with the w*-topology is homeomorphic to Se. We define
a semigroup structure on MP(S) by using this isomorphism (that is,
for \,veMp(S) define λ*v = (iTW*λ)(i*v))). Thus MP(S) is a com-
mutative affine w*-semitopological semigroup. By Proposition 1.2 S
is a compact semitopological hypergroup. Further for x e X, λ e M(S),
I (jδx)dλ = (δx,j*X}, which shows that jδx is a character of S.

Note that in the lemma M(X) may be replaced by an L-subspace
A of M(X)9 (that is, A is a closed subspace of M(X) and μeM(X)
and J « < < V G 4 implies μeA). The dual of A is a w*-closed ideal
in M(X)* and so is itself a commutative TF*-algebra. However, the
point masses δx may not be in A.

DEFINITION 1.4. Suppose X is a locally compact Hausdorff space
and A is an L-subspace of M(X). Say A is an abstract measure
algebra if it is a Banach algebra in the measure norm, and APAP c Ap

(where Ap — An MP(X)). We say A has an identity if there exists
an algebra identity c e Ap. If A is commutative we let ΔA denote the
spectrum (maximal ideal space) of A, considered as a subset of the
unit ball of the dual A* of A. Further μ denotes the Gelfand trans-
form of μeA, so μeC0(JA).

THEOREM 1.5. Suppose A is a commutative abstract measure
algebra with identity t, and E is a w*-closed subset of ΔA with the
following properties'. (1) 1 e E; (2) fe E implies feE;(2)geE,μeA
imply \\(g. μ)~\\E ^ \\μ\\E, (where \\μ\\s - sup {\μ(f) \:fe E}). Then
the norm-closed linear span of w* co E is isomorphic to C(Y), where
Y is a compact semitopological hypergroup with an identity, and the
natural map σ: A—>M(Y) is a homomorphism with w*-dense range.
Further σc = δβ9 where e is the identity in Y. If A contains a point
mass δx, then σδx is a point mass in Y. The set E considered as a
subset of C(Y) consists of characters of Y.

Proof. The Gelfand transform maps A—>C{E). By Lemma 1.3
w* co (E) is closed under multiplication. Thus the norm closure of
sp (w* co (E)) is a self-ad joint closed subalgebra of A*, hence is iso-
morphic to C(Y), (Y is its spectrum). We define the natural map

j:M(E)->C(Y) so that O,iλ> = f μdK, (μ e A, λe M(E)); note jxe
C(Y) c A*. Observe jδ, = 1, and jMp(E) = w* co (E). We show that
j satisfies the hypotheses of Lemma 1.3. Note that ||jλ||F is given
by
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Hjλllr = sup{|</ι,/λ.>|: jueA, \\μ\\ £ 1}

= S U P { | j / d λ ' PeAf IMI ̂ * }

Let ye Y and define j \ : Y-*M{E)* by <λ,ii»> = JMv)t (κe
For /<e4,λ6M(E) we have

<Λ, iθ"i» λ)> = ( Mill/ λ) = <£ λ, j\w> = j(β λ)(i/).
JE

Thus

Now

= s u p j I vμdx :veA,\\v\\<^l\

(since vμ - (vμΓ and \\vμ\\ ^ ||y|| | | ^ | | ) . Thus H^y λ| | r ^ | |λ| |F.
Further jM(E) = sp(w*coJE

r) is dense in C(F), so by Lemma 1.3 Y
is a compact semitopological hypergroup. Note that EaC(Y) con-
sists of characters of Y*.

Let σ be the natural map A—>M(Y). Clearly σA is w*-dense in
M(Y). Further the convolution on M(Y) is defined in terms of multi-
plication in M(E)*, but the map A—>C{E) c M{E)* is a homomorphism,
so σ is a homomorphism.

Since e = l on E we have <r, /> = 1 for all few*coE. For
f,gew* co (#), <£, /£> = 1 = <7, /></, #> (since /gr e w* co # ) thus
fm~*(?9fy is multiplicative and norm bounded on sp (w* co (£/)), so
there exists a unique point eeY so that <£, /> = f(e), (fe C{Y)).
Thus σc — δe and β is the identity of Y. If there is a point mass
δxeA then /—•<#*,/> is multiplicative on A*, so ^ is a point mass
in Γ.

It would be interesting to know whether Y has any characters
other than the elements of E, but the answer is presently unknown
to the author. If ΔA has the properties specified for E, then the set
characters of Y is ΔA, since σA is w* dense in M(Y) and characters
of Y give multiplicative linear functionals on M(Y).

This line of investigation was motivated partly by Taylor's work
[7] on structure semigroups of convolution measure algebras. Pym
[5] has a result similar to Theorem 1.5 for the spectrum of a com-
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mutative Banach measure algebra M(X) in which multiplication is
separately w*-continuous and the map μ\-* f μ is bounded in the
spectral norm (μ\-+ \\β\\J)9 for each feAM{x).

A compact hypergroup H is defined by Definition 1.1 with "sep-
arately continuous" in condition (2) replaced by "jointly continuous".
We write H for the set of characters of H, and AH for the spectrum

of M{H). For μeM(H),φeίϊ, let μ(φ) = ί ψdμ. In the sequel we

will refer to [1] for necessary details.
We will now construct a compact hypergroup H for which neither

AH nor the closure of H in AH satisfy the hypotheses of Theorem 1.5.

EXAMPLE 1.6. There exists a compact hypergroup H and ψ e tcH
(the closure of H in AH) such that μ ι-> ψ μ, (μe M(H)), is bounded
in neither the IPIU nor the || |U norm.

Proof. Let H^ be the finite hypergroup described in Example 4.6
of [1]. Briefly the points of ΈLγ correspond to rows of the matrix

Φo Φi Φz

e Γ l 1 1

1 -1/2 0

1 1/4 0 _

and multiplication is pointwise. That is, the columns correspond to
the characters of Hx. Note that φ\ = (1/8)(φ0 — 2φ1 + 9&) Let v be
the measure 3e + δri - 2δT2 on Hlf then v(φQ) = 0, v{φx) = 0, and v(φ2) = 1.

Let H be the Tikhonov product Πϊ=i H19 so H is a compact hyper-
group. For n = 1, 2, •••, let ϋΓ% = Π?=i HΊ We identify M(Hn) with
a subalgebra of M{H) under the map

(f e C(H), μ e M(Hn)). By a multi-index J we mean a sequence / =
(ii, i2, •) where is — 0,1, 2 and i, — 0 for all but finitely many s
For a multi-index / let ^z(#) = ^(αO^fa*) * *"' ^ ^ e n ^ e ^ -^e^ v ^ ~
v x x v (n times), an element of M{H%), and let μn = σi;Λ e M(H).
The spectrum of M(Hn) is isomorphic to S u = {φji I multi-index, is = 0
for s > tι}. Thus the spectral norm of a measure in M(Hn) (or σM(Hn))
is realized on £ Λ . Let ψ™eίϊ be given by a/rim)(x) = ^(a^) ••• φm(xn)
{xeH,m = 1,2). We claim ||/ZJU = lli" IU = 1, in fact for φj£Sn,
<μn, Φi> - UU <v, &,> - 0 if ^ Φ ψ{:\ and <^n, ^i2)> - 1. Let m ^ n,
then <̂ U5 Λ, ^y = (9/8) . Indeed <^5 /^, ^1}> = ί ^ ! ί V » . -
Π ^ i <y, ^i^i> = (9/8)71. Let α/r be a w*-cluster point of {^υ} in ΔH.
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Then <fi".,'fi.1)> = (9/8) and ||/<JL = ||jδ.[|- = 1, but ||( ψ jtί,Π|. ^

2* P*~hypergroups* See [1] for a reference for this section.

DEFINITION 2.1. A compact hypergroup H is called a P*-hyper-
group if:

(1) there exists an invariant measure mH e MP(H) and a con-
tinuous involution χy->x', (xeH) such that

(R(x)f)gdmH = I f{R(xf)g)-~dmH ,
7 J77

and such that β e support λ(α?, α?')> (f,geC(H),xeH), (R(x): C(H) -*

C(JΪ) is defined by R(x)f(y) = ( /dλ(x, ?/),/e C(H), a? e H);
^ ^ ^ J77

(2) HH a co H, that is, for each φ,ψeH there exists a non-
negative function n(φ,ψ;-) on H with only finitely many nonzero
values such that ό(x)f(x) = Σ ω 6 £ w(0, τ/r; ω)α>(a?), (xeH).

Recall from [1] that each subhypergroup K oΐHis, by definition,
closed and is normal (xeK implies x' eK), if H is P*. Furthermore,
K is itself a P*-hypergroup with invariant measure mκ.

DEFINITION 2.2. Let if be a compact P*-hypergroup and let
μ e M{H). Define μ* e M(H) by

\jdμ* = (\H(f(χ'

Then μ —* μ* is an algebra involution and (μ*)~(φ) = (β(Φ))~, (Φ e H)
(see Theorem 3.5 [1]).

DEFINITION 2.3. The set B(H) = {/e: j« G AΓ(H)} C C5(fl") is a self-
adjoint separating algebra of continuous functions on H and contains
the constants. Let tcH be the compactification of H induced by this
algebra. Equivalently /cίί is the spectrum of the sup-norm closure
of B{H)j and H is a dense open subset.

THEOREM 2.4. tcH is a compact semitopological hypergroup, and
H is a discrete subhypergroup. Further tcίl, as a subset of ΔΉ {the
spectrum of M(H)), is w*-closed, contains 1, and is self-adjoint.

Proof. Let j be the bounded linear map: M(H) —+ C(fcH) which
φdμ, (μ 6 M{H), φe H). Observe

H

\\Jμ\L = | | £ | U Also j3e = 1. For φ,ψeHyμeM(H) we have
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3(Φ-μ)(Ψ) = ί Φψdμ - Σ n(φ, ψ; ω)\ ώdμ = Σ n(Φ, Ψ\ o))β(ω) .

But \j(φ-μ)(ψ)\^ΣΛ»e&n(φ,r,ω)\β(<»)\^\\β\L=\\3ί'\\~- Thus we
can apply Lemma 1.3 and obtain that tcH is a semitopological hyper-
group. Further Mp(fcH) is isomorphic to iv* co (H) c M(H)*, and the
functions {i^. # e if} are characters of /cH.

We now apply Theorem 1.5 to icH and obtain the following:

THEOREM 2.5. Suppose H is a compact P*-hyper'group, then there
exists a compact semitopological hypergroup Y such that /cH is a set
of characters of Y, the norm-closed span of w* co (H) is isomorphic to
C(Y), and there is a monomorphism σ: M(H)—* M(Y) with w*-dense
range.

3. Simple P*-hypergrouρs* In this section i ϊ will always denote
a compact P*-hypergroup. We will describe an additional hypothesis
which allows a complete description of ΔH. This hypothesis is realized
in the algebra of ultraspherical series (see Example 4.3 [1]). The
author suspects that the algebra of central measures on a compact
simple Lie group also satisfies the hypothesis.

Recall from [1] that the center of H, Z(H), is {x e H: y e H implies
that X(x, y) is a point mass}. Further Z{H) is a compact subgroup
of H and is the set {xeH: \φ(x)\ = 1, (φeH)}.

DEFINITION 3.1. Let n be a positive integer. Say if has property
Sn if for each compact set Kd H\Z(H) the sum Σ ^ φ)(sup / c \φ \)2n <
oo, (where c{ψ) = ([ \φ\2dmΛ \ (The letter "S>? suggests "simple"

V \}H I J

in the sense that if K is a subhypergroup of H such that K ς£ Z(H)
then K is open; see 3.4.) Say H is an SP-* hypergroup if it has
property Sn for some n.

DEFINITION 3.2. Let Mh(H) = {μ e M(H): \μ\Z{H) = 0}, an L-sub-
space of M{H). Note M(H) = M(Z(H)) 0 Mh(H). Let π be the norm-
bounded projection: M(H)-+M(Z(H)). For μeM(H) we write μ =
πμ + μh, so μh e Mh(H).

We will show that if H is an SP-* hypergroup and mH{Z(H)) = 0
then Mh{H) is an ideal in ikf(if) and its annihilator in ΔH is ΔH\H.
Thus ΔH\H is isomorphic to ΔZ{H). The case mH(Z(H)) > 0 will also
be discussed.

PROPOSITION 3.3. Suppose His an SP-* hypergroup with property
Sn for some positive integer n and μeMh(H), then μneL1(H), (note
μn =z μ*μ ••• *μ (n times)).
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Proof. First suppose μeMh(H) has compact support K with

Z(H)f)K=0. ThenίorφeH,\μ(φ)\ = \\μ\\su^κ\φ\. We

claim μ* e L\H) c Lι(JEΓ); indeed Σ#βAcfo) I ΨTiΦ) I2 = Σ * Φ ) \μ(φ) Γ ^
I I ^ I P ' Σ * ^ ) (suPit \Φ\Yn < °° The set of such μ is norm-dense in
Mh(H) and the map μ t-* /** is norm-continuous taking a dense subset of
Mh(H) into 2/(12"), a closed subspace of M(H).

For Mh(H) to be a nontrivial ideal it is necessary that Xr1(JEΓ) c
Mk(H). We present a lemma which gives several equivalent charac-
terizations of this

LEMMA 3.4. Let K be a subhypergroup of a compact P*-hyper-
group H. The following statements are equivalent:
(Recall K1 = {φ e H: φ \ K = 1})

(1) K is open;
(2) mH(K)>0;
(3) each hypercoset of K1 is finite;
(4) some hypercoset of Kλ is finite;
(5) mκ is a nonzero multiple of mH \ K.

Proof. We first observe that each of (3) and (4) is equivalent to
K1 being finite. It K1 is finite then each hypercoset φ K1, (Φ e H), is
finite, since φψ has finite support in H, (ψe H). Further K1 is con-
tained in the support of φ-(φ-KL) for each φeίϊ, so if some hyper-
coset is finite then K1 is finite (for more details see 3.16 [1]).

(1) implies (2): Note that the support of mH is JET, (3.2 [1]).
(2) implies (3): The characteristic function χκ e L\H) and

(XκΓ(Φ) = ( φdmH = mH(K) >0foτφe KK But Σ*e£ c(χx)\(φΓ(ψ) I2 <
oo, thus K1 is finite, (since c(φ) ̂  1).

(3) implies (1) and (5): Recall (mκ)~ is 1 on KL and 0 off
K1 (3.14 [1]). Since K1 is finite we have mκ = f mH where fe C(H);
in fact /espfl". Since the support of mH is i ί we see t h a t / ^ o
and / = 0 off K. We will show that / is constant on K, which im-
plies that K is open and mκ is a nonzero multiple of mH\K. Since
/ mH is the invariant measure on K, the identity (/ mH)*μ = f mH

holds for each μ € MP(K), (1.12 [1]). By Proposition 3.4 [1] this im-
plies that

f(x) = \κR(x)f(y')dμ(y), (xeK).

Thus f(x) = R{x)f{yr) for each x,yeK. Let a = sup*/ and let Kx =

{aeiΓ:/(a) = α}. For xeKuyeK,a = f(x) = R(x)f(y') = \ fdx(x,y'),
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but this implies that / is constant with value a on the support of
X(x, yr). Thus Kx is a nonempty (closed) ideal in K, but K is normal
so Kx = K and / is constant on K.

(5) implies (2): Clear.

Note if H is an SP-* hyper group and x e H\Z{H) then

is finite, so if if is a subhy per group of H with Kςt Z(H) then ϋΓ1 is
finite implying K is open (by 3.4).

The following will be needed for the case where Z(H) is open
in H.

LEMMA 3.5. Suppose K is an open subhypergroup of a compact
P*-hypergroup H,ψeK and μ eM(H) with \μ\K = 0, then

Σ {e(Φ)β(Φ): Φ eH, φ\K ̂  ψ} = 0 ,

(note this is a sum over a (finite) hypercoset of KL)

Proof. We will show that *ΣΛΦ\K=Ψ
 C(Φ)Φ is equal to a multiple of

ψ on K and is zero off K. By Lemma 3.4 there exists d ̂  1 such
that mκ = dmH\K. Let fe C(H) be defined by / = ψ on K and / = 0

off K. Then f(φ) = [ φfdmH = (l/d)[ φfdmκ, so f(Φ) = W t ) ) " 1 for

I α ί r and /(^) = 0 otherwise, (note c(ψ) = (\ \ψ\2dmκ) , see 3.17
V \}κ J

Thus fespH and is given by the series (dc(ψ))~ι
 ΣΦIK^Ψ c(Φ)φ NOW

0=\fdμ = (deiΨ))-1 Σ, c(φ)\ φdμ
1 Σ c(φ)β(φ) .
φ\K=ψ

For the following H will be an SP-* hypergroup, and for nota-
tional convenience we will write G for Z(H).

PROPOSITION 3.6. // mHG = 0 ίfcew the projection π: M(H) -> M(G)
is a homomorphism and is bounded in the H-sup-norm (\\fi\\J).

Proof. For μ e M(H) we set μ = πμ + μk. By 3.3 there exists
an integer n so that μ\ e L\H). Thus μh —> 0 at oo on H. Let γeG,
then Er = {φ eH: φ\G = 7} is a hypercoset of GL and is infinite (see
3.17 [1]). Let ψefcH\ίϊ (fcH is the closure of Ή. in AH) be the limit
of an infinite convergent net {φa} c Er. Then μ(ψ) = limα
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Ύ). Note also \μ(ir)\^\\μ\\oo. Thus
and the functional μv^(πμ)~(y) is multiplicative for

each 7 eG. Hence π is a homomorphism.

The following is now evident, (note for μh e Mh(H) that μh — 0
off H).

THEOREM 3.7. // mHG = 0 then each element of ΔH\H is of the
form μ \—> (πμ)~(ψ) for some ψ e ΔG. This correspondence is an isomor-
phism (of compact semitopological semigroups) of ΔH\H with ΔG. The
hyper group /cH is isomorphic to H U tcG (where tcG is the closure of
G in ΔG), and H is attached to fcG so that an unbounded net {φa} c H
clusters at a point ψ e /cG if {φa \ G} c G clusters at ψ.

In this particular situation, co ΔH is already a semigroup. Let
S be the spectrum of the norm-closed span of ΔG in M(G)*, then S is
a compact semitopological semigroup (Taylor [7], or see [2, Ch. 1]).
Let σ1 be the canonical homomorphism: M(G)—>M(S). Let Y be the
spectrum of the norm-closed span of co (AH) in M(H)*. Then Y is
the disjoint union of H and S. The homomorphism σ: M(H) —* M( Y)
is given by σμ = σλ(πμ) + μh; recall πμeM(G) so σλ(πμ) e M(S) and
μh e M(H). Since σ has w*-dense range we see that H is an ideal
in Y.

THEOREM 3.8. Suppose mHG — 0 and μ is an idempotent in
M(H), then πμ is an idempotent in M(G) and μh has finite support
in H* Thus {φ e H: μ(φ) — 1} is in the hypercoset ring of ίϊ.

Proof. Since π is a homomorphism, πμ is idempotent in M(G).
Thus (μuΓ = β — {K^T is integer-valued, but tends to zero at co on
H, so is zero for all but finitely many points in H. By Cohen's
theorem [2, Ch. 5], S = {TGG: (πμ)~(y) = 1} is in the coset ring of G.
The set {φ e H: (πμ)~(φ) = 1} = {φ e H: φ \ G e S}, which is in the hyper-
coset ring of H (see 3.18 [1]).

If G is open in H then each hypercoset of GL is finite. In this case
Mh(H) is not an ideal (unless H = G), but μ e Mh(H) does imply μ = 0
off H. Each element of ΔH\H is of the form μ H* (πμ)~(ψ), (μ e M(H))
for some ψ e ΔGG. (Note if πμ e L\G) c Lι(H) then (πμ)~ is zero off
GczΔG and is zero off HaΔH.) Thus ΔH\H is isomorphic to ΔG\G. It
can be shown that ΔH is isomorphic to (ΔG\G) (J Jϊ with fl" attached
to κG\G in the obvious way.

THEOREM 3.7. If G is open in H and μ is an idempotent in
M(H) then {φ e ΈL\ μ(φ) = 1} is in the hypercoset ring of H.



STRUCTURE HYPERGROUPS FOR MEASURE ALGEBRAS 425

Proof. Set μ = πμ + μh. We will show μk is finitely supported
on H9 thus πμ differs from an idempotent in M(G) by a trig poly-
nomial on G (an element of spGcC(G)). Since //A—*0 at ©o on H,
the set 2^= {^elϊ: \(μhΓ(Φ)\ > 1/3} is finite. Let F^ \JteFφ-G1,
a finite union of hypercosets of GL, then JPL is finite since GL is finite
(see 3.4). We claim (μhΓ = 0 off Fx. Indeed, let φeH\F, and sup-
pose φλeH with φlG-φίlG, then ^ ί ^ and (πμ)~(φ) = {πμ)~{φύ.
Thus iβiΦJ-fi(φ)l = \(μhΓ(Φ0-(μhΓ(Φ)\£2/3. But /* is integer
valued so //(^) = /ϊ(^) and (^^"(^i) = (μuTiΦ)- Thus /iA is constant on
^ G1 and by Lemma 3.5 we have (/^)^ = 0 on ^ G1.
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