Pacific Journal of

Mathematics

GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS

RONALD FRANCIS GARIEPY




PACIFIC JOURNAL OF MATHEMATICS
Vol. 47, No. 2, 1973
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RONALD GARIEPY

If f is a mapping from an open k-cube in R* into R~
2<k < mn, whose coordinate functions belong to appropriate
Sobolev spaces, then the area of f is the integral with
respect to % dimensional Hausdorff measure over R" of a
nonnegative integer valued multiplicity function.

1. Introduction. If f: @ — R", @ an open k-cube in R*,
2 <k £ n, is a mapping whose coordinate functions belong to appro-
priate Sobolev classes, it was shown in [6] that f is £ — 1 continuous
and that the area of f, as defined in [5], is equal to the classical
Jacobian integral. The purpose of this paper is to investigate, using
the theory of currents as in [2], the geometric-measure theoretic
properties of such a surface and to show that the area is equal to
the integral with respect to % dimensional Hausdorff measure in R"
of an integer valued multiplicity function.

2. Suppose k and n are integers with 2 < k£ =< n. Let
Q=RN{x: 0<o;, <1 for 1 <i<k

and let A(k,n) denote the set of all k-tuples A= (A, -+, ;) of
integers such that 1 <\ <+« <M = n. Suppose f: @— R*, f=
(fy «=, s ffeW,(Q), p:>Fk—1, and >%.,1/p;, =1 whenever
re Ak, n). Here W3i(Q) denotes those functions in L?(Q) whose dis-
tribution partial derivatives are functions in L?(Q).

Let e, + -+, e, be the usual basis for B” and let

er =6y N\ N\ &, ,

ne A(k, n), denote the corresponding basis for the space of k-vectors
in R* For neA(k, n) let p* denote the orthogonal projection of R
onto R* defined by letting

W) = Wy, ++,v) for y=(y, -, ¥.)eR".

For almost every (in the sense of k& dimensional Lebesgue measure
FA) xeQ, let Jf(@) = Sacanm JS(®)e; where Jf? denotes the deter-
minant of the matrix of distribution partial derivatives of f* = p*of.
In [6] it was shown that the area of f, as defined in [5] is equal to

SQIJ f (@) |de where |Jf(x)| is the Euclidean norm of the Ek-vector
Jf(@).
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Define a current valued measure T over @ by letting

T(B)®) = | s(F@) - TF @

whenever B is an & measurable subset of @ and ¢ is an infinitely
differentiable k-form on R™ with compact support. Let ¢ denote the
finite measure defined over R" by letting

o) =|  15f@)ds

whenever Y is a Borel subset of R™.

It will be shown in part 3 that 7(B) is a locally rectifiable cur-
rent whenever B is an &% measurable subset of @ and this fact will
be used to define a nonnegative integer valued function N on R*
which describes the multiplicity with which f assumes its values.
The main results of the paper are summarized here.

THEOREM. Let H} denote k dimensional Hausdorff measure in
R” and let a(k) denote the &5 measure of the unit ball in R*.
1. For HF almost every ye R

_ o o(B(y, )
N@) = lm =

Here B(y, r) denmotes the open ball of radius r around y.
2. | N ary = | 177@) |ds.

3. There exists a countable family F of k dimensional C' sub-
manifolds of R™ such that for ¢ almost every ye R™ there is an
MecF with ye M, )

OBy, ) — M) _
L iy v

and

o(B(y, " N M) _
= W

3. Definition of the function N and proof of the theorem.
We follow a plan analogous to that of [2: 2.1]. For 1<k and
rel={s:0<s<1} let P(r)=@Qn{x: o, =1}. Let {fj}] be a se-
quence of mollifiers of f as in [6] and let f denote the pointwise
limit of {f;} wherever it exists. Then f is a representative of f and
according to [6], [7: Chap. 3], and [8: part 3] there exists a collection
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P of the sets P;(r) such that for each 4, P;(r)e P for almost all (in
the sense of 1 dimensional Lebesgue measure) re I and if ¢ is any
k-cube in @ whose k — 1 faces all lie in elements of P then

(1) f;|Bdry ¢ converges uniformly to f |Bdry g,

(2) H}(f (Bdryg) =0

() L..(f|Bdryq) = lim, .. L, (f;|Bdryq), where L, ,
denotes & — 1 dimensional Lebesgue area.

Henceforth we will denote by f the pointwise limit of mollifiers
{f;} as described above. A k-cube ¢ C @ whose k — 1 faces all lie in
elements of P will be called “special”.

For the notation concerning currents we refer to [3].

LemMA 1. If f is bounded then T(B) is a rectifiable current
whenever B is an &, measurable subset of Q.

Proof. If qc @ is a special k-cube then
lim | [ J7,@) — Jf(@ |ds = 0

and hence the sequence {f;.(q)} of currents converges weakly to T(g).
The supports of the fi.(¢) and T'(g) are all contained in a fixed com-
pact set,

M(fida) = | 175 | da,
and
M(@F@) = Li, (7| Bdry g

where M denotes mass in the space of currents. Thus, by [4: 8.14,
8.13], T'(g) is an integral current whenever ¢ is special.
Since it is clear that

MT(A) = | 17/ @)|do

whenever A is an &%, measurable subset of @, the lemma follows.

Let || T|| denote the finite measure over @ defined by letting
Tl (A) denote the supremum of the numbers >3, M(T(B;)) taken
over all countable disjoint collections of &, measurable subsets
B; A whenever A is an &7, measurable subset of Q. Clearly

1T < | 177 @)] do

whenever A is an &, measurable subset of Q.
For <&, almost every xc@ there is a k-covector w in R™ with
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|w] =1 such that o - Jf(x) = | Jf(2)| and

1T (B, ) T(B(x, r)(@) _
li?W zlim == o~ TT@

It follows that || 7| (4) = S |Jf(x)| dr whenever A is an &5 meas-
A

urable subset of Q.
For each positive integer N let fy = (f%, -+, f%) where

N if fi(w) = N

fi@) = {fil)y if | i@ <N
N if fiw) = —N.

Then fy is bounded and fye W, (@) for 1 £ ¢ = n. For any measur-
able set BC Q let

T,(B)@) = | 6(2@) - TF@da

whenever ¢ is an infinitely differentiable k-form on R". Note that,
if Y is a bounded Borel set in R”, then, for sufficiently large N,
Tw(B)L Y = T(B)L Y whenever B is an ¢, measurable subset of Q.
Consequently, if Y is a bounded open subset of R™ then T(B)L Y is
rectifiable whenever B is a measurable subset of Q.

Analogous to [2: 2.1 part 3] we have

LEMMA 2. There exists a countable collection F of k dimensional
C* submanifolds of R"™ such that o(R™ — U F) = 0.

Proof. Suppose r and ¢ are positive real numbers and let
BO,7) = R"N{y: ly| <7}.

Let {A4,, ---, A,} denote a finite collection of disjoint measurable sub-
sets of f7(B(0,7)) such that & (f~(B(0,7) — U~ 4;) =0 and
o(B0,7) —e < > M(T(A;). Note that T(4,) = T(4;)L B(0, ) is
rectifiable for j =1, ---, m. Thus, by [4:8.16], there exists for
each j a countable collection G; of k-dimensional C' submanifolds
of R* such that || T(4,) || (R~ — U G;) = 0. Letting G = U~, G;, we
have

¢ = a(B(0, ) — z M(T(4;) = z (I T (4;) — M(T(4,))

= 5T N (R~ UG

iMs M

= 2T 0B = U6) =0B0,1)-UG
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and the lemma follows.
If ¢ is a measure over R", yc R", and AcC R™ we let

b _ 1 24N By, 1)
0% (¢, A, y) = lm}r——W—‘—

whenever the limit exists. In case 4 = R" we write 0*(u, y).

Recall that, if S is a k& dimensional rectifiable current in R™ and
Y is a Borel set in R™ with H¥(Y) =0, the SLY = 0. Thus o is
absolutely continuous with respect to HY. This fact together with
Lemma 2 and the finiteness of ¢ allow us to conclude using [1: 3.1,
3.2] that:

1. 6%, y) exists for HF almost every ye R".

2. For o almost every ye R™ there exists an M<c F' such that
yeM, 6%, y) < «, and 0%, R* — M, y) = 0.

5. | 040, WMy = o(R?).

A proof of the following statement concerning rectifiable currents

can be found in [2: 2.1 part 7]: If S is a rectifiable £ dimensional
current in R*, M is a k dimensional C* submanifold of R",

ye M — spt oS,

k(| S1l, ¥) < e, 6%(|S||, R — M,y) =0, and P is an oriented %k
plane tangent to M at y, then there exists a unique integer m such
that

lim —X_F[SL By, 7 — m(P N By, )] =0
r-o+ (k)rt
where F' denotes the flat norm [4: 3.2].
Now suppose ¢ is a special k-cube in @ and ye R™. If there is
an MeF with ye M — f(Bdry q), 6%(o, y) < =, and

0%, R* — M,y) = 0,

let P denote an oriented k-plane tangent to M at y, let m(q, y) denote
the integer such that

lim—L _ F[T(q)L By, — mla, ) (PNBy, =0

o+ (k) r®
and set «(g, y) = m(q, y) {(y) where {(y) is the simple unit k-vector
orienting P. Otherwise set a(q, y) = 0.

Then, for Hf almost every ye R",

k [T(9)L By, Nl _ .
0T (@)L ¢, y) = lim () = ¢(¥) - a(g, v)
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whenever ¢ is an infinitely differentiable k-form in R". Consequently

T(g) (¢) = S é(y) + a(q, y)dHFy whenever ¢ is an infinitely differenti-
R'IL

able k-form and hence

MT@) = | a0 |dH}y

whenever ¢ is a special k-cube.

For yeR" let N(y) denote the supremum of the numbers
Seeelalg, )| taken over all finite collections G of nonoverlapping
special k-cubes in Q.

Suppose N(y) = 0 and G is a finite collection of nonoverlapping
special k-cubes such that a(g, ¥) # 0 for ¢e G. Let w denote a k-
covector with |w]| =1 and @ - {(y) = 1. Then

qugxa«z, Y= qg} [05(T () _w, v) |

Y 1 [T@L By, n)] (@) |
= lm % alk)rt

= 60%0,9) .

Thus N(y) £ 6o, y) for H almost every ye R™.
On the other hand, if G is any finite collection of nonoverlap-
ping special k-cubes,

3 MT@ | | S e, ) dHy .

The supremum of the numbers >, .. M(T(g)) taken over all finite col-
lections G of nonoverlapping special k-cubes is readily seen to be
o(R™) and hence

o) < | Nwary=| oo, vty < o®?).
RT R
Thus N(y) = 6%(o, y) HF almost everywhere and

| Nwarsy = | 177@ i da.
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