Pacific Journal of Mathematics

GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS

RONALD FRANCIS GARIEPY

Vol. 47, No. 2

February 1973

GEOMETRIC PROPERTIES OF SOBOLEV MAPPINGS

RONALD GARIEPY

If f is a mapping from an open k-cube in \mathbb{R}^k into \mathbb{R}^n , $2 \leq k \leq n$, whose coordinate functions belong to appropriate Sobolev spaces, then the area of f is the integral with respect to k dimensional Hausdorff measure over \mathbb{R}^n of a nonnegative integer valued multiplicity function.

1. Introduction. If $f: Q \to R^n$, Q an open k-cube in R^k , $2 \leq k \leq n$, is a mapping whose coordinate functions belong to appropriate Sobolev classes, it was shown in [6] that f is k-1 continuous and that the area of f, as defined in [5], is equal to the classical Jacobian integral. The purpose of this paper is to investigate, using the theory of currents as in [2], the geometric-measure theoretic properties of such a surface and to show that the area is equal to the integral with respect to k dimensional Hausdorff measure in R^n of an integer valued multiplicity function.

2. Suppose k and n are integers with $2 \leq k \leq n$. Let

$$Q = R^k \cap \{x: 0 < x_i < 1 \text{ for } 1 \leq i \leq k\}$$

and let $\Lambda(k, n)$ denote the set of all k-tuples $\lambda = (\lambda_1, \dots, \lambda_k)$ of integers such that $1 \leq \lambda_1 < \dots < \lambda_k \leq n$. Suppose $f: Q \to R^n$, $f = (f^1, \dots, f^n)$, $f^i \in W_{p_i}^1(Q)$, $p_i > k - 1$, and $\sum_{j=1}^k 1/p_{\lambda_j} \leq 1$ whenever $\lambda \in \Lambda(k, n)$. Here $W_p^1(Q)$ denotes those functions in $L^p(Q)$ whose distribution partial derivatives are functions in $L^p(Q)$.

Let e_1, \dots, e_n be the usual basis for \mathbb{R}^n and let

$$e_{\lambda}=e_{\lambda_1}\wedge\cdots\wedge e_{\lambda_k}$$
 ,

 $\lambda \in \Lambda(k, n)$, denote the corresponding basis for the space of k-vectors in \mathbb{R}^n . For $\lambda \in \Lambda(k, n)$ let p^{λ} denote the orthogonal projection of \mathbb{R}^n onto \mathbb{R}^k defined by letting

$$p^{\lambda}(y) = (y_{\lambda_1}, \dots, y_{\lambda_k})$$
 for $y = (y_1, \dots, y_n) \in \mathbb{R}^n$.

For almost every (in the sense of k dimensional Lebesgue measure \mathscr{L}_k) $x \in Q$, let $Jf(x) = \sum_{\lambda \in A(k,m)} Jf^{\lambda}(x)e_{\lambda}$ where Jf^{λ} denotes the determinant of the matrix of distribution partial derivatives of $f^{\lambda} = p^{\lambda} \circ f$. In [6] it was shown that the area of f, as defined in [5] is equal to $\int_Q |Jf(x)| dx$ where |Jf(x)| is the Euclidean norm of the k-vector Jf(x). Define a current valued measure T over Q by letting

$$T(B)(\phi) = \int_{B} \phi(f(x)) \cdot Jf(x) dx$$

whenever B is an \mathscr{L}_k measurable subset of Q and ϕ is an infinitely differentiable k-form on \mathbb{R}^n with compact support. Let σ denote the finite measure defined over \mathbb{R}^n by letting

$$\sigma(Y) = \int_{f^{-1}(Y)} |Jf(x)| dx$$

whenever Y is a Borel subset of R^n .

It will be shown in part 3 that T(B) is a locally rectifiable current whenever B is an \mathscr{L}_k measurable subset of Q and this fact will be used to define a nonnegative integer valued function N on \mathbb{R}^n which describes the multiplicity with which f assumes its values. The main results of the paper are summarized here.

THEOREM. Let H_n^k denote k dimensional Hausdorff measure in R^n and let $\alpha(k)$ denote the \mathscr{L}_k measure of the unit ball in R^k . 1. For H_n^k almost every $y \in R^n$

$$N(y) = \lim_{r o 0^+} rac{\sigma(B(y, r))}{lpha(k)r^k} \; .$$

Here B(y, r) denotes the open ball of radius r around y.

2.
$$\int_{\mathbb{R}^n} N(y) \ dH_n^k y = \int_Q |Jf(x)| \ dx \ .$$

3. There exists a countable family F of k dimensional C^1 submanifolds of R^n such that for σ almost every $y \in R^n$ there is an $M \in F$ with $y \in M$,

$$\lim_{r o 0+} rac{\sigma(B(y,\,r)\,-\,M)}{lpha(k)r^k} = \, 0$$

and

$$\lim_{r
ightarrow 0+}rac{\sigma(B(y,\,r)\cap M)}{lpha(k)r^k}=\,N(y)$$
 .

3. Definition of the function N and proof of the theorem. We follow a plan analogous to that of [2: 2.1]. For $1 \leq i \leq k$ and $r \in I = \{s: 0 < s < 1\}$ let $P_i(r) = Q \cap \{x: x_i = r\}$. Let $\{f_j\}$ be a sequence of mollifiers of f as in [6] and let \overline{f} denote the pointwise limit of $\{f_j\}$ wherever it exists. Then \overline{f} is a representative of f and according to [6], [7: Chap. 3], and [8: part 3] there exists a collection P of the sets $P_i(r)$ such that for each i, $P_i(r) \in P$ for almost all (in the sense of 1 dimensional Lebesgue measure) $r \in I$ and if q is any k-cube in Q whose k - 1 faces all lie in elements of P then

(1) $f_j | \text{Bdry } q$ converges uniformly to $\overline{f} | \text{Bdry } q$,

(2) $H_n^k(\bar{f}(\operatorname{Bdry} q)) = 0$

 $(3) \quad L_{k-1}(\overline{f} \,|\, \mathrm{Bdry} \, q) = \underline{\lim}_{j \to \infty} L_{k-1} \, (f_j \,|\, \mathrm{Bdry} \, q), \text{ where } L_{k-1}$

denotes k - 1 dimensional Lebesgue area.

Henceforth we will denote by f the pointwise limit of mollifiers $\{f_j\}$ as described above. A k-cube $q \subset Q$ whose k-1 faces all lie in elements of P will be called "special".

For the notation concerning currents we refer to [3].

LEMMA 1. If f is bounded then T(B) is a rectifiable current whenever B is an \mathscr{L}_k measurable subset of Q.

Proof. If $q \subset Q$ is a special k-cube then

$$\lim_{j\to\infty}\int_q |Jf_j(x) - Jf(x)| \, dx = 0$$

and hence the sequence $\{f_{j\sharp}(q)\}$ of currents converges weakly to T(q). The supports of the $f_{j\sharp}(q)$ and T(q) are all contained in a fixed compact set,

$$M(f_{j\sharp}(q)) \leq \int_{q} |Jf_{j}(x)| dx$$
 ,

and

$$M(\partial f_{j\sharp}(q)) \leq L_{k-1}(f_j | \operatorname{Bdry} q)$$

where M denotes mass in the space of currents. Thus, by [4: 8.14, 8.13], T(q) is an integral current whenever q is special.

Since it is clear that

$$M(T(A)) \leq \int_{A} |Jf(x)| dx$$

whenever A is an \mathscr{L}_k measurable subset of Q, the lemma follows.

Let ||T|| denote the finite measure over Q defined by letting ||T|| (A) denote the supremum of the numbers $\sum_{j=1}^{\infty} M(T(B_j))$ taken over all countable disjoint collections of \mathscr{L}_k measurable subsets $B_j \subset A$ whenever A is an \mathscr{L}_k measurable subset of Q. Clearly

$$|| T || (A) \leq \int_{A} |Jf(x)| dx$$

whenever A is an \mathscr{L}_k measurable subset of Q.

For \mathscr{L}_k almost every $x \in Q$ there is a k-covector ω in \mathbb{R}^n with

 $|\omega| = 1$ such that $\omega \cdot Jf(x) = |Jf(x)|$ and

$$\overline{\lim_{r o 0+}} rac{||\,T||\,(B(x,\,r))}{lpha(k)r^k} \geq \lim_{r o 0+} rac{T(B(x,\,r))(\omega)}{lpha(k)r^k} = |\,Jf(x)\,|$$
 .

It follows that $||T||(A) = \int_{A} |Jf(x)| dx$ whenever A is an \mathscr{L}_{k} measurable subset of Q.

For each positive integer N let $f_N = (f_N^1, \dots, f_N^n)$ where

$$f^i_{\scriptscriptstyle N}(x) = egin{cases} N & ext{if} \;\; f^i(x) \geqq N \ f^i(x) & ext{if} \;\; |f^i(x)| < N \ -N & ext{if} \;\; |f^i(x) \leqq -N \;. \end{cases}$$

Then f_N is bounded and $f_N^i \in W_{p_i}^1(Q)$ for $1 \leq i \leq n$. For any measurable set $B \subset Q$ let

$$T_{\scriptscriptstyle N}(B)(\phi) = \int_{\scriptscriptstyle B} \phi(f_{\scriptscriptstyle N}(x)) \cdot J f_{\scriptscriptstyle N}(x) dx$$

whenever ϕ is an infinitely differentiable k-form on \mathbb{R}^n . Note that, if Y is a bounded Borel set in \mathbb{R}^n , then, for sufficiently large N, $T_N(B) \sqcup Y = T(B) \sqcup Y$ whenever B is an \mathscr{L}_k measurable subset of Q. Consequently, if Y is a bounded open subset of \mathbb{R}^n then $T(B) \sqcup Y$ is rectifiable whenever B is a measurable subset of Q.

Analogous to [2: 2.1 part 3] we have

LEMMA 2. There exists a countable collection F of k dimensional C^1 submanifolds of R^n such that $\sigma(R^n - \bigcup F) = 0$.

Proof. Suppose r and ε are positive real numbers and let

$$B(0,\,r) = R^{\, \imath} \cap \{y \colon |\, y\,| < r\}$$
 .

Let $\{A_1, \dots, A_m\}$ denote a finite collection of disjoint measurable subsets of $f^{-1}(B(0, r))$ such that \mathscr{L}_k $(f^{-1}(B(0, r)) - \bigcup_{j=1}^m A_j) = 0$ and $\sigma(B(0, r)) - \varepsilon < \sum_{j=1}^m M(T(A_j))$. Note that $T(A_j) = T(A_j) \sqcup B(0, r)$ is rectifiable for $j = 1, \dots, m$. Thus, by [4:8.16], there exists for each j a countable collection G_j of k-dimensional C^1 submanifolds of \mathbb{R}^n such that $|| T(A_j) || (\mathbb{R}^n - \bigcup G_j) = 0$. Letting $G = \bigcup_{j=1}^m G_j$, we have

$$egin{aligned} &arepsilon &\geq \sigma\left(B(0,\,r)
ight) \,-\,\sum_{j=1}^m M(T(A_j)) \,=\,\sum_{j=1}^m \left(\mid\mid T\mid\mid (A_j) \,-\, M(T(A_j))
ight) \ &\geq \sum_{j=1}^m \mid\mid T\mid\mid (A_j \cap\, f^{-1}\,(R^{\,n} \,-\, igcup \,G)) \ &\geq \sum_{j=1}^m \mid\mid T\mid\mid (A_j \cap\, f^{-1}\,(R^{\,n} \,-\, igcup \,G)) \,=\, \sigma(B(0,\,r) \,-\, igcup \,G) \end{aligned}$$

and the lemma follows.

If μ is a measure over R^n , $y \in R^n$, and $A \subset R^n$ we let

$$heta^k(\mu,\,A,\,y) = \lim_{r o 0+} rac{\mu(A\cap B(y,\,r))}{lpha(k)r^k}$$

whenever the limit exists. In case $A = R^n$ we write $\theta^k(\mu, y)$.

Recall that, if S is a k dimensional rectifiable current in \mathbb{R}^n and Y is a Borel set in \mathbb{R}^n with $H_n^k(Y) = 0$, the $S \sqcup Y = 0$. Thus σ is absolutely continuous with respect to H_n^k . This fact together with Lemma 2 and the finiteness of σ allow us to conclude using [1: 3.1, 3.2] that:

1. $\theta^k(\sigma, y)$ exists for H_n^k almost every $y \in \mathbb{R}^n$.

2. For σ almost every $y \in R^n$ there exists an $M \in F$ such that $y \in M$, $\theta^k(\sigma, y) < \infty$, and $\theta^k(\sigma, R^n - M, y) = 0$.

3. $\int_{\mathbb{R}^n} \theta^k(\sigma, y) dH_n^k y \leq \sigma(R^n).$

A proof of the following statement concerning rectifiable currents can be found in [2: 2.1 part 7]: If S is a rectifiable k dimensional current in \mathbb{R}^n , M is a k dimensional \mathbb{C}^1 submanifold of \mathbb{R}^n ,

$$y \in M - \operatorname{spt} \partial S$$
,

 $\theta^k(||S||, y) < \infty$, $\theta^k(||S||, R^n - M, y) = 0$, and P is an oriented k plane tangent to M at y, then there exists a unique integer m such that

$$\lim_{r\to 0+}\frac{1}{\alpha(k)r^k}F\left[S \bigsqcup B(y,r) - m(P \cap B(y,r))\right] = 0$$

where F denotes the flat norm [4: 3.2].

Now suppose q is a special k-cube in Q and $y \in \mathbb{R}^n$. If there is an $M \in F$ with $y \in M - f(Bdry q)$, $\theta^k(\sigma, y) < \infty$, and

$$heta^k(\sigma, R^n - M, y) = 0$$
 ,

let P denote an oriented k-plane tangent to M at y, let m(q, y) denote the integer such that

$$\lim_{r \to 0+} \frac{1}{\alpha(k)r^k} F \left[T(q) \, \lfloor \, B(y, \, r) \, - \, m(q, \, y) \, (P \cap B(y, \, r)) \right] = \, 0$$

and set $\alpha(q, y) = m(q, y) \zeta(y)$ where $\zeta(y)$ is the simple unit k-vector orienting P. Otherwise set $\alpha(q, y) = 0$.

Then, for H_n^k almost every $y \in \mathbb{R}^n$,

$$heta^k(T(q)ot \phi, y) = \lim_{r o 0} rac{[T(q)ot B(y,r)](\phi)}{lpha(k)r^k} = \phi(y) \cdot lpha(q,y)$$

whenever ϕ is an infinitely differentiable k-form in \mathbb{R}^n . Consequently $T(q)(\phi) = \int_{\mathbb{R}^n} \phi(y) \cdot \alpha(q, y) dH_n^k y$ whenever ϕ is an infinitely differentiable k-form and hence

$$M(T(q)) \leq \int_{\mathbb{R}^n} |lpha(q, y)| \, dH_n^k y$$

whenever q is a special k-cube.

For $y \in \mathbb{R}^n$ let N(y) denote the supremum of the numbers $\sum_{q \in G} |\alpha(q, y)|$ taken over all finite collections G of nonoverlapping special k-cubes in Q.

Suppose $N(y) \neq 0$ and G is a finite collection of nonoverlapping special k-cubes such that $\alpha(q, y) \neq 0$ for $q \in G$. Let ω denote a k-covector with $|\omega| = 1$ and $\omega \cdot \zeta(y) = 1$. Then

$$egin{array}{ll} \sum\limits_{q\, \epsilon\, G} \mid lpha(q,\,y) \mid &= \sum\limits_{q\, \epsilon\, G} \mid heta^k(T(q) igstarrow oldsymbol{\omega},\,y) \mid \ &= \lim\limits_{r o 0} \;\; \sum\limits_{q\, \epsilon\, G} rac{\mid \left[T(q) igstarrow B(y,\,r)
ight](oldsymbol{\omega}) \mid \ &lpha(k) r^k \ &\leq heta^k(\sigma,\,y) \;. \end{array}$$

Thus $N(y) \leq \theta^k(\sigma, y)$ for H_n^k almost every $y \in \mathbb{R}^n$.

On the other hand, if G is any finite collection of nonoverlapping special k-cubes,

$$\sum_{q \in G} M(T(q)) \leq \int_{R^n} \sum_{q \in G} |\alpha(q, y)| dH_n^k y$$
.

The supremum of the numbers $\sum_{q \in G} M(T(q))$ taken over all finite collections G of nonoverlapping special k-cubes is readily seen to be $\sigma(R^n)$ and hence

$$\sigma(R^n) \leq \int_{R^n} N(y) dH_n^k y \leq \int_{R^n} \theta^k(\sigma, y) dH_n^k y \leq \sigma(R^n) \ .$$

Thus $N(y) = \theta^k(\sigma, y) H_n^k$ almost everywhere and

$$\int_{\mathbb{R}^n} N(y) \, dH^k_n y = \int_{Q} |Jf(x)| \, dx$$
 .

References

1. H. Federer, The (ϕ, k) rectifiable subsets of n space, Trans. Amer. Math. Soc., 62 (1947), 441-466.

2. ____, Currents and area, Trans. Amer. Math. Soc., 98 (1961), 204-233.

3. ____, Geometric Measure Theory, Springer-Verlag, New York, 1969.

4. H. Federer and W. Fleming, Normal and integral currents, Ann. of Math., 72 (1960), 458-520.

5. C. Goffman and F. C. Liu, Discontinuous mappings and surface area, Proc. London Math. Soc., **20** (1970), 237-248.

6. C. Goffman and W. P. Ziemer, *Higher dimensional mappings for which the area formula holds*, Ann. of Math., **92** (1970), 482-488.

7. C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.

8. Y. G. Reshetnyak, Space mappings with bounded distortion, Siberian Math. J., 8 (1967), 446-487.

Received March 7, 1972.

UNIVERSITY OF KENTUCKY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305 J. DUGUNDJI*

Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH

R. A. BEAUMONT

University of Washington

Seattle, Washington 98105

B.H. NEUMANN

F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$48.00 a year (6 Vols., 12 issues). Special rate: \$24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270. 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

* C. DePrima will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics All Rights Reserved

Pacific Journal of Mathematics Vol. 47, No. 2 February, 1973

David Parham Bellamy, Composants of Hausdorff indecomposable	202
continua; a mapping approach	303
Colin Bennett, A Hausdorff-Young theorem for rearrangement-invariant	011
spaces	311
Roger Daniel Bleier and Paul F. Conrad, <i>The lattice of closed ideals and</i>	
a*-extensions of an abelian l-group	329
Ronald Elroy Bruck, Jr., Nonexpansive projections on subsets of Banach	0.41
spaces	341
Robert C. Busby, <i>Centralizers of twisted group algebras</i>	357
M. J. Canfell, <i>Dimension theory in zero-set spaces</i>	393
John Dauns, One sided prime ideals	401
Charles F. Dunkl, <i>Structure hypergroups for measure algebras</i>	413
Ronald Francis Gariepy, Geometric properties of Sobolev mappings	427
Ralph Allen Gellar and Lavon Barry Page, A new look at some familiar	
spaces of intertwining operators	435
Dennis Michael Girard, <i>The behavior of the norm of an automorphism of the</i>	
unit disk	443
George Rudolph Gordh, Jr., Terminal subcontinua of hereditarily	
unicoherent continua	457
Joe Alston Guthrie, <i>Mapping spaces and cs-networks</i>	465
Neil Hindman, <i>The product of F-spaces with P-spaces</i>	473
M. A. Labbé and John Wolfe, <i>Isomorphic classes of the spaces</i> $C_{\sigma}(S)$	481
Ernest A. Michael, <i>On k-spaces</i> , k_R -spaces and $k(X)$	487
Donald Steven Passman, <i>Primitive group rings</i>	499
C. P. L. Rhodes, A note on primary decompositions of a	
pseudovaluation	507
Muril Lynn Robertson, A class of generalized functional differential	
equations	515
Ruth Silverman, <i>Decomposition of plane convex sets</i> . <i>I</i>	521
Ernest Lester Stitzinger, On saturated formations of solvable Lie	
algebras	531
B. Andreas Troesch, <i>Sloshing frequencies in a half-space</i> by <i>Kelvin</i>	
inversion	539
L. E. Ward, <i>Fixed point sets</i>	553
Michael John Westwater, <i>Hilbert transforms, and a problem in scattering</i>	
theory	567
Misha Zafran, On the spectra of multipliers	609