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In this paper, the equation y! = Ay is solved, where A is
a self-mapping of a certain set of functions. Also, a continuous
dependence theorem is proven, and wth-order differential equa-
tions are considered.

1* Definitions* If p is a real number and I - {Iu J2, •••} is a

collection of intervals so that p e Ix and In g In+1 for each positive
integer n, then I is said to be a nest of intervals about p. Let Jo =
{p} and [αw, &„] = In for each nonnegative integer n. Let I* denote
the union of all the elements of I.

In general, B denotes a Banach space; and if D is a real number
set, let C[D, B\ denote the set of continuous functions from D into B.
Whenever D is an interval, C[D, B] is considered a Banach space with
supremum norm | |

Let C{I, B) denote the set of continuous functions whose domain
is either Io, I*, or an element of I; and whose range is a subset of B.

Suppose A is a mapping from C(I, B) into C(I, B) so that
( i ) domain / = domain A/, for all / e C(I, B),
(ii) (Af) \Ik = A{f\Ik), for all / e C(I, B) and I, s domain /, for

positive k, [Note: f\I]c is the restriction of / to Ik.] and
(iii) there is a function M from I* into the nonnegative reals

that is Lebesgue integrable on any interval contained in /, so that
\\Af(x) - Ag(x) I! 5S M(x) \f - g\9 for all f,ge C[Iiy B] so t h a t f\x^ =

# 1 / ^ and &€ Iif for each positive integer i.
Then, A is said to be an I-map with function M. Furthermore,

if the phrase "/!/<_! = 0l/<-i" *s removed from part (iii) of the previous
definition, A is said to be an /-map with strong function M.

2* Main results*

THEOREM A. Suppose A is an I-map with function M; and

max <\ % M,\z M\ < 1, for all positive integers i. Then if qeB,

there is a unique y e C[I*, B] so that y' = Ay and y(p) = q.

Proof. Let {(p, q)} = yQ. Then y0 is the unique function in C[/o, B]
Ay0 for all x e Jo. Now, suppose n is a non-

P

negative integer so that yn has been defined in C[In, B] to be the
Ayn for all x e In. Then, D =
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{/ e C[In+1, B]/f \In = yn) is a complete metric space. If feD, let

Tf(x) = q+ Γ Af, for all xeln+1. Now if xeln and feD, then
JP

Tf(x) =q+\Άf=q+ J"(A/) \1% = q-
Thus (27) I/. = y.f and thus 27 e Z>.

Suppose f,geD. Then,

I 27 - Tg\ = max {|| 27(a;) - Tg(x)\\/x e 7,+1}

-Aβr) | }

Note that f\In = sΊZjt and this implies that A(f\If) = A(g\In). Thus,
(Af)\In = (Ag)\In; that is, Af(s) = Ag(s) for all s in /,. So

2 7 - 2VI ̂  max {sup j j [ || A/(β) - Aflr(β) ||dβ/aj e [b., 6M

s u p | | " * | | Af(s) - Ag(s) \\dsfxe [α»+1, α n ] | |

^ m a x | s u p | \ Λf(s) | / - gr|ds/ίc e [bn, bΛ+1]\ ,

sup {j^te) I / -

Hence T is a contraction map from the complete metric space D into

D, and thus Γ has a unique fixed point yn+1. So g/w+1 is the unique

Ayn+ι for all x in /n+1.

So by induction yk is defined for each positive integer 1c. Define y(x) =
2/«(̂ ) whenever x e /w\/w__!. Then ?/ is the desired function.

The following corollary (See [6].) shows that Theorem A guarantees
the existence of solutions to some functional differential equations.
Suppose gr is a function from J* to J* so that g(In) § J» for each
positive integer n. Such a function is said to be an /-function. Let
Ak = {x e [akfak^]/g(x) £ Ik^} and let Bk = {x e [6fc-1, bk]/g(x) <£ J ^ J , for each
positive integer k. Also, suppose \\F(x, y) — F(x, z) || ^ Jlf(α;) ||̂ / — z\\
for all xe I*,y, zeB; and Λί is Lebesgue integrable on intervals.

COROLLARY. If qeB, and max \\ M,\ M\ < 1, /or αZΪ fe; then
ljAk jBk )

there is a unique ye C[I*, B] so that y(p) = q and yf{x) = F(x, y(g(x)))
for all xe I*.
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Proof. Let (Af)(x) = F(x, f(g{x))) Then A is an /-map with
function T, where

T(x) = , for a?e/n\/»-!.
(0 , α;£A w u5*

The proof of the following is straightforward.

PROPOSITION. Suppose I is a nest of intervals about p, and each
of oc and β is an I-function. Then

(i) Suppose P is of bounded variation on each interval contained

S β[χ)

dF /, for f e C(I, B) and x e domain /.
a(x)

Then A is an I-map with function M, where M(x) is the variation of
F over [a(x)9 β(x)]\Ik-i where x e Ik\Ik^.

(ii) Suppose K: /* x /* to the scalars which is continuous, and
Af(x) = [βiX)K(x, t)f(t)dt, for feC(I, B) and xe domain f. Then A

Joc(χ) If

is an I-map with function M, where M(x) — I \K(x, t)\dt
\){a{z),β{x)-\\Ik__1

for x e /Λ\/fc-i.

It is easy to show that the set of /-maps, for a fixed nest of
intervals /, is a near-ring under composition and addition. Thus,
there are many types of differential equations that may be solved
by combining /-maps of the types given in the corollary and the
proposition.

3* Continuous dependence*

THEOREM B. Suppose A(z, •) is an I-map with strong function

M for each z in the topological space K, q e B, and Mk — max \ \ M,

S
bk -] KJak

M\ < 1, for all positive integers k. Let y(z, •) be the unique
function, guaranteed by Theorem A, so that y2(z, •) = A(z, y(z, •)) and
y(z, p) = q. Then, there exists a sequence {L{} so that for z, z0 e K,
\y(z, •) - 2/(s<>, )l/< ̂  W \A{z, y(z0, •)) - A(zOy y(zQy ))\u, for each i.
[In the previous inequality the norm is the supremum norm over I{.]

Indication of proof. Define {LJ as follows: Let Lι = max (p — aι9

For i ̂  1, let Li+1 = {L, + max (α, - αί+1, bi+1 - bt)}/

EXAMPLE. Let g be an /-function and let N > 0. Then let K
be the metric space of all /-functions that are pointwise never more
that N from g. Define A(h, y) = y(h\domy) and d(hl9 h2) = sup
h2(x)\/xe I*); d is the metric.
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4* Nth order equations*

THEOREM C. Suppose A is an I-map with function M,n is a
positive integer, and qΰ9ql9 , qn~i β B. Let

Nk = max
rra>k-ιrak-ι r«*-i

\\ \ 1 M(sn)dsn

S
H fs! fβn-l

. . . M(8n)d8n-.d8
* * — i J 6jfc—l J**-i, i/ iVfc < 1, for all positive integers k, there is a unique y e

C[I*, B] so that yin) = Ay and y(p) = q0, . , y(n-1](p) = qn^.

Indication of proof. Use induction, Theorem A, and the following
lemma.

LEMMA. Suppose H is an I-map with function S, and q eB, then
rx

define Kf(x) = q + 1 Hf, for all f e C(I, B) and x e domain f. Then
}p [ak~ι

K is an I-map with function T, where T(x) = \ S, whenever x e

S x }x

S, whenever x e [bk_u bk).
The proof of Theorem D is straightforward and Theorem E is a

special case of Theorem D. Both of these theorems are imitations of
standard theorems of ordinary differential equations.

THEOREM D. (A generalized system of equations theorem.) Sup-
pose Bi is a Banach space with norm \\ \\i9 for each positive integer i
between 1 and n. Let Bf = {(xl9 x2, , xn)/xt e B{}. Also, let \\(xl9 ,
xn)\\ = max (ll&iHi/l ^ i ^ n}, for all elements of B\ [Then B' is a
Banach space.] Furthermore, suppose H^. C(I, B') to C(I, B^ for 1 <̂
i ^ n so that

(1) if f' e C(I, Br), domain f = domain Hif,
(2) if fe C(I, B'), and Ik £ domain f,k> 0, then (HJ) \I]c =

Htif^), and
( 3 ) there is M^ I* to the reals which is Lebesgue integrable

on intervals so that if f, g e C[Ik, B']y f\ϊk__1 = g\Ik-u ccnd x e Ik, then
11 HJix) - Ha(x) 11 ^ M<(x) I / - g |. Now, define A: C(I, B') to C(I, Br)
so that Af - (HJ, H2f, , Hnf), for all f e C(I, B>).

Then A is an /-map with function max {Mi/1 ^ i ^ n).

THEOREM E. Suppose B' is as in Theorem D, with B = Bi9 for
all i. Also, suppose H = Hn and M = Mn, where Hn and Mn are as
in Theorem D. Suppose q0, -, qn^ e B and
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(Cak-l Chk Λ

max < \ max {1, ikf},I max {1, M) \ < 1, for all k > 0 .

Then, there is a unique yeC[I*,B] so that

y™ = H((y, yω, •• , i/(—1})) and y{i) = qi9 for 0 ^ i ^ n - c.

EXAMPLE. Suppose each gi is an /-function, then for appropriate
functions Fi9 Theorem E guarantees the existence of a solution to

y{n)(χ) - ΆiFk(χ,y{*-k)(g*(χ))), for all xel*.
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