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The space of bounded sequences with the mixed topology
has some interesting properties and can be used to answer
two questions on boundedly generated spaces asked by T. Ito
and T. Seidman.

1* Introduction* We consider the locally convex algebra m of
bounded complex sequences with pointwise addition and multiplication
equipped with the mixed topology [11]. The topology τ is the same
as the strict topology β [1] on C(S), when S is taken to be the
space of positive integers. This space has a number of interesting
properties, some of which can be found in [11], [3] (Example 3), [1],
and [4]. In this note we obtain some further results such as: this
space is hereditary boundedly generated [6], it has an unconditional
Schauder basis, and its Gelfand map is continuous.

The basic ideas are as in [7]. A locally convex space E is said
to be boundedly generated, in short, BG if it is the closed linear span
of a bounded subset; it is said to be hereditary boundedly generated,
in short, HBG, if every closed linear subspace of the space is BG
[6] E is called sequentially barrelled if every τs(E, E')-null sequence
in the topological dual Ef of E is equicontinuous [10]. The sequential
dual E+ of E is the set of sequentially continuous linear functionals
/ on i?(i.e., /(«?»)—>0 whenever xn-+0 in E) [10]. E is called semi
1-barrelled if every τs(E, £")-bounded sequence in E' is equicontinuous
[3]. A barrel in a locally convex algebra E that is also an idempotent
set (i.e., AdE such that A.Ac: A) is called an m-barrel and E is
said to be m-barrelled if every m-barrel in E is a neighborhood of 0
[8]. Let E be a complex locally convex algebra. Let M denote the
set of nonzero, continuous, multiplicative, linear functionals on E,
provided with the weak topology induced by E. Let C(M) denote
the space of complex continuous functions on M with the topology of
compact convergence. The Gelfand map G on E to C(M) is given
by G{x)(m) = m(x) (xeE,me M). E is called strongly semi-simple if
G is an algebraic isomorphism of E into C(M).

Now let E denote the space m with the mixed topology τ or,
equivalently, the strict topology β. A base of τ-neighborhoods of 0
is given by

^ = {Ua = {x = (xn): \xn\ < an, n = 1, 2, •••}, a = (αft),
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Let B = {xeE: \xn\ < 1, n = 1, 2, •••}, | | g | | = sup{|a?Λ | : n = 1, 2, •••}

for xem. Let e* = (&Λ): x{ = 1 and α?Λ = 0 if i ^ %. Let

ί1 = jα Gm: Σ I ̂  I < ooj ,

and || x | | t = Σ~ = 1 I a» I 0» e ί1)- The α-dual of m is Z1 ([7], § 30.1) and
(m, Z1) is thus a dual pair.

2* Properties of the space E.
I. E is complete and has the Mackey topology zk(lι).
It is proved in [1] (also in [3]) that E is complete. The second

part follows from [4], Theorems 2 and 4, on taking S to be the set
of positive integers with the discrete topology.

II. No topology on m compatible with duality is barrelled or m-
barrelled.

The set B is a barrel [3] and not a neighborhood in E, also
it is idempotent. As E carries the strongest topology compatible with
duality and barrels remain barrels under any topology compatible with
duality, the result follows immediately.

III. E is an HBG space.
For any subspace F of E, F = U {n(B f] F): n = 1, 2, •} and,

therefore, F is the closed linear hull of a bounded subset of itself.

REMARK 1. It was asked in question (2) of [6], if there are any
HBG spaces that are not Banach or separable Frechet spaces. II
and III give an affirmative answer.

REMARK 2. In [2] the first part of question (3) in [6] was
answered in the negative and the following more general question
was raised: If F is a BG space with dual F', then must there be a
barrelled topology compatible with duality (F,F')Ί The example
given there to prove that the answer is "No" is artificial in the sense
that its completion is a Banach space and thus barrelled. By I, E
is a complete space and II and III show that it serves as a better
example.

IV. A sequentially continuous linear functional on E is con-
tinuous and E is sequentially barrelled.

Combining [5], Theorem III (2.8) and I above, we have Er = E+.
Thus τ = τk(E+, E). Proposition 4.3 in [10] then gives that E is
sequentialy barrelled.
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V E is not semi 1-barrelled.
Consider A — {en: n = 1, 2, •} c I1 = E'. For each x e E, and for

n = 1, 2, ., I en(x) \ = | xn | < || α? ||. So A is re(j5", £r)-bounded. Also
the polar A° of A in E is 1? which is not a neighborhood. There-
fore, A is not equicontinuous.

REMARK 3. It is known ([3], Proposition 9 (ii), p. 481) that a semi
1-barrelled space is sequentially barrelled. IV and V show that the
reverse implication may not be true. We take this opportunity to
point out that there are two Proposition 9 in [3] (!) and in Proposi-
tion 9 (ii) on p. 481 [3] it should be almost semi-1-barrelled instead
of almost semi-barrelled.

VI. E has a Schauder basis (en), which is
( i ) bounded multiplier,
(ii) boundedly complete,
(iii) not of type P*,
(iv) unconditional,
(v) shrinking,
(vi) not of type P,
(vii) monotone, and
(viii) e-Schauder [5].
We note that m is perfect and normal ([7], §30.1), Ef = V = mx

and τ = τk(V). We can use [5], I (2.5) to obtain (i), (ii), and (iii). To
prove (iv) we appeal to [5], I (2.4) and (i) above. The strong dual
of E is (ϊ1, || . HO and it has (en) as a Schauder basis, so (v) is true.
For (vi) note that en —• 0 in E. Also ^ satisfies the conditions for
(en) to be monotone and SNUa c Ua for all Uae^ and N = 1, 2,
Thus (vii) and (viii) are true.

REMARK 4. It is well-known that m with the sup-norm topology
is not separable and thus cannot have a basis. The above result
shows the difference a change in the topology can make.

VII. C(M) is barrelled.
Let 0 Φ fel1 and / be multiplicative on E. Because

n

x = lim Σ χjej 9

f(x) = lim .̂,̂  Σ?=i χjf(e°) f° r e a c h χ e E So there is an n such that
f(en) Φ 0. Also f(en) = f(enen) = f(en)f(en), so we must have f{en) = 1.
Now for o Φ n f(en)f(e3') = /(eV) = /(0) = 0, so f(ej) = 0. Thus
f(x) = χn and / can be identified with en e IK So
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M= {en: n = 1, 2, •••} .

Also {x}° f]M = {en} if x e m be such that xn=l and α̂  = 2 for j ^ n.
Hence M can be identified with the set of positive integers with the
discrete topology. Therefore, C(M) is the space of all complex
sequences with the topology of pointwise convergence and is, thus
barrelled.

REMARK 5. We note that m-barrelledness of some topology com-
patible with duality is sufficient in [8], Lemma 3.1 (or [9], Cor. 6.3)
and even this condition is not necessary as shown by II and VII.

VIII. E has jointly continuous "multiplication.
If a — (an) be such that 0 < an —> co then for b = (bn), where

bn = all2, 0 < &Λ-> oo and also UhUhd Ua.

IX. The Gelfand map is continuous but not a homeomorphism.
It is immediate from the proof of VII.
The next result shows that E does not, however, have a good

functional representation.

X. E cannot be embedded algebraically and topologically in a
C(X) for X a locally compact Hausdorff space or for X a completely
regular Hausdorff space.

From the proof of VII we get that G is an isomorphism of E
into C(M), and thus E is strongly semi-simple. Also in view of VIII,
E is a topological algebra in the sense of [9]. Combining Theorem
4.6 of [9] and IX above we get the required result.

REMARK 6. This space also helps in distinguishing some classes
of topological algebras such as m-Λ -barrelled algebras, m-A -infrabar-
relled algebras, locally boundedly multiplicatively convex algebras.

I should like to thank the referee for his suggestions regarding
the format of the paper.
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