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Let (G, Z) be a second countable locally compact topological
transformation group, % (G, Z) the associated C*-algebra and
L a certain naturally constructed representation of Z' (G, Z)
on L¥G X Z,dg X da), dg being left Haar measure on G and
« a quasi-invariant ergodic probability measure on Z. Repre-
sentations of Z7(G, Z) constructed from positive-definite meas-
ures on G X Z are used to prove that Z7 (G, Z) is type I if and
only if all the isotropy subgroups are type I and Z/G is T, and,
under the assumption of a common central isotropy subgroup,
that I, has no type I component if o is nontransitive. By
means of quasi-unitary algebras, necessary and sufficient con-
ditions are derived for L to be semi-finite under the weaker
assumption of a common type I unimodular isotropy subgroup.

After establishing notation and discussing preliminary material
in §2, we prove in §3 that %/ (G, Z) is type I if and only if Z/G is
T, and all isotropy subgroups are type I. This result, proven by
Glimm [9, Theorem 2.2] for the special case in which isotropy subgroups
can be chosen “continuously”, is not surprising in light of Mackey’s
Imprimitivity Theorem and the correspondence between representations
of (G, Z) and systems of imprimitivity based on (G, Z) (see §2).
Our general proof, based on the fact that isotropy subgroups can
always be chosen “measurably” [1, Proposition 2.3], follows by con-
struction of a direet integral of certain representations which, by
being defined in terms of positive-definite measures, are easily specified
and shown to form an integrable family.

In §§4 and 5 we consider the type of a W*-algebra .o~ constructed
via an ergodic quasi-invariant probability measure « on Z (see §4 for the
construction). This algebra was studied by Murray and von Neumann
in [14], [15], and [16] for the case of G discrete (see also {4, pp. 127~
187]), by Dixmier in [3, §§10-12] for the case of G acting freely on
Z and by Kallman in [10] for the case in which « is transitive. In
§4 we first show that .o is the von Neumann algebra generated by
the representation of Z/ (G, Z) determined by the positive-definite
measure 6, X da on G X Z. Then assuming that almost all (da) points
in Z have the same isotropy subgroup H, we use a direct integral
decomposition of .o arising naturally from a consideration of the
measure J, X da to prove that if a« is nontransitive and if H is in
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addition central in G then . has no type I component. In §5 we
use different methods, namely the theory of quasi-unitary algebras,
to derive necessary and sufficient conditions that . be semi-finite,
under the weaker assumption that almost all (da) points in Z have
the same isotropy subgroup H and that H is type I and unimodular.

The results of §38 are contained in the author’s Doctoral Disser-
tation written at the Massachusetts Institute of Technology under the
direction of Professor Roe W. Goodman.

2. Notation and preliminaries. If X is a second countable
locally compact Hausdorff space, we denote by .97°(X) the continuous
functions on X of compact support, with the inductive limit topology,
and by M(X) the dual space of Radon measures on X with the weak
*-topology. For ze X, i, M(X) is the probability measure on X
concentrated at #. For a locally compact group G, d,g, or simply dg,
denotes left Haar measure on G and 4, the corresponding modular
function. We assume throughout this paper that both G and Z are
second countable locally compact Hausdorff spaces, that all Hilbert
spaces are separable and that all representations of algebras are
nondegenerate.

Although we refer to [6], primarily §§1, 3, and 4, for the construc-
tion of and basic results concerning Z/ (G, Z), we list for convenience
some facts, and establish more notation. .%7(G x Z) is a topological
*-algebra and is dense in Z/ (G, Z) [6, pp. 32-35]. The correspondence
L =V, M) between representations L of Z/ (G, Z) on a Hilbert space
7 and systems of imprimitivity <V, M) based on (G, Z) and acting
on 57 is completely determined [6, pp. 34-37] by

CL(F)x, yp

.1)
= | (9, Vo), 4dg, £ & 57(G x Z), 5, ye 57 .
If there is no possibility of confusion, we shall use the same symbol
M for the representation of .977(Z), its extension to the algebra L>(Z)
of bounded Borel functions on Z, the corresponding projection-valued
measure, and the generated W*-algebra in <& (5#). We denote by
D(G x Z) the set of positive-definite measures on G X Z, that is,
{(pe M(GX Z): p(f*+f)=0Vfe % (GxZ). peDG x Z) determines
a representation L? of Z/(G, Z) on 577, and there is a canonical con-
tinuous map of (G x Z) onto a dense subspace of 5#* [6, §4].
Blattner’s results on induced positive-definite measures and their
connection with induced representations [2, Theorem 1] can be extended
from the group to the transformation group context. Let H be a
closed subgroup of G and L = (V, M) a representation of % (H, Z).
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As a special case of [18, §3], one can construct an induced system of
imprimitivity <{ind (V), ind (M)> based on (G, Z) and thus by (2-1) an
induced representation ind (L) of % (G, Z). Ind(V) is the usual
representation of G induced from the representation V of H. If pe
D(H x Z) define $e M(G X Z) by

(2.2) B(f) = p(f 445" uxz), e (G X Z) .

LeEMMA 2.83. If p in D(H x Z) determines a representation L of
Z (H, Z), then e D(G x Z) and determines a representation of Z (G,
Z) unitarily equivalent to ind (L).

Proof. The proof of Theorem 1 of [2] can be repeated, with
obvious modifications, and we omit the details.

LevMA 2.4, If 2 — L° is an integrable family of representations
of % (H, Z), then v — ind (L°) is an integrable family of representa-
tions of Z (G, Z) and Sind (L®) 1s unitarily equivalent to ind (SL")

Proof. We sketch the argument. Let L° = (V® M*> on S#°.
By using the approximate identity in .97 (H x Z) and the two formulas
in [6, Lemma 3.26] one sees that x —V?*(s) and & — M*(h) are meas-
urable operator fields for se H, he 9 (Z). By Theorem 10.1 of [12],
x—ind (V*) is a measurable field of representations of G on the

induced Hilbert spaces ind (5#°*) and Sind (V*) on Sind (£7°°) is unitarily

equivalent to ind (SV’”) on ind (S%””) A similar argument verifies

that - (ind (M®))(h) is measurable for k€ .97°(Z) and that the unitary
operator implementing the above equivalence for the representations

of G transforms X(ind (M7)(h) into (ind (SM’»(h). From the fact z —

ind (V*) and = — ind (M*) are measurable it follows that x — ind (L*) is
measurable. To see this, note that any we % (G, Z) can be approxi-
mated in norm by finite sums of the form > f, & h;, ;€ % (G) and h;
97 (Z), and then apply (2.1). To finish the proof we note that from
the 2 formulas in [6, Lemma 3.26] again, it is clear that for any
measurable field of representations x — L* = (V*, M*) the system of

imprimitivity corresponding to SL’” is <§ Ve, SM’°> Thus the repre-

sentations Sind (L*) and ind(SL“ are unitarily equivalent because
their respective systems of imprimitivity <Sind (V9), Sind (M“)> and

<ind (g v*), ind (§M>> are.

For ve D(H) the measure ¥, defined by (2.2) with Z ignored, lies
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in D(G). If H is the isotropy subgroup of @ € Z then vy x 6% € D(H x
Z) and the induced measure on G x Zisexactly b x 6. If L =<V,
M) is the representation of %/ (H, Z) determined by v x 6p, V is
unitarily equivalent to the representation of H determined by v, M(k) =
k(@)I for ke 2 (Z),ind (M) is concentrated on the orbit Go, and the
commutants of ind (L) and V are algebraically isomorphic (see [6,
§4] for details).

3. The type of (G, Z). For e Z let H, denote the isotropy
subgroup of ®,d;,, a left Haar measure on H, and v, the induced
measure d,.

LEMMA 3.1. There ts a choice of left Haar measures on the
tsotropy subgroups of G so that for each fe . 27 (G <X Z), the function
0: Z — C defined by 0(p) = (v, x0.)(f) 1s bounded and Borel.

Proof. Let .&°(G) denote the family of all closed subgroups of
G, endowed with the compact Hausdorff topology described by Fell in
[7]. The map @ — H, of Z into .&”(G) is Borel |1, Proposition 2.3] and
left Haar measures d, can be chosen on the subgroups H of G so that
the map H — d, of S2(G) into M(G) is continuous (this follows from [9,
appendix] and the proof of Theorem 4.2 of [8]). Thus for g e % (G)
the composite map ® —v,{g) is Borel. To show that # is bounded
and Borel, we need the following estimate (see [9, Lemma 1.1]). Let
K be a compact subset of G and se % (G) with »=0 and #=1 on
K. Since H—d,(~) is a continuous function on the compact set .&# (@),
it is bounded by a positive constant a. For any ke 2 (G x Z) with
suppk & K x Z, and for any He &7(G), pc Z, we have

(=) | dy % (k)| = |dulk(-, P)| = |kl du()] < @] k]|, -

Thus 6 is bounded. Let 4 and B be compact subsets of G and Z
contained, respectively, in relatively compact open sets Uand V. If fe
27 (G x Z) with suppf S 4 x B, f can be uniformly approximated
by finite sums of the form 3, ¢;® ki, g:€ 5 (G), suppg; S U, h; e
2 (Z), supp h; S V. The estimate (x), applied to the compact set
K = U, implies that ¢ is the uniform limit on Z of the Borel functions
P — (Vo X 8,) 9: R hy) = 3, vo(9:)hi (@), and is thus Borel.

Fix a “measurable” choice of left Haar measures on the isotropy
subgroups as allowed by Lemma 3.1 and for e Z let L¢ denote
the representation of %7 (G, Z) on the Hilbert space 57°¢ determined by
Yo X do.

LEMMA 3.2. For every positive Radon measure a on Z the direct
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tntegral representation L = S Ledo(p) exists.
z

Proof. For fe % (GxZ) let f'(p) denote the canonical image
of f in &#¥*. The map f — f'(®) is continuous with respect to the
inductive limit topology on .#°(G x Z) and the norm topology on
S7¢ (this follows from [6, Lemma 3.7]). Since G and Z are second
countable, 2 (G x Z) contains a countable dense set {f;} [6, proof
of Corollary 4.12], and by the preceding remarks and Lemma 3.1, it
follows that the fi(®) are a fundamental sequence of measurable vector

fields and thus the direct integral 57 = S S#¢da(P) exists [4, Chapter
zZ

II, §1, »° 4]. Each ue % (G, Z) is the limit in norm of a sequence
ke (G X Z) and thus <L*(u) fi®), £i(P)y = lim, (v, X 0,)(f]*haxf5)
is a measurable function on Z, again by Lemma 3.1, and the direct
integral L =\ L*da(®) exists.
z

It follows from [9, Theorem 2.1] and [6, Theorem 4.29 and Lemma
4.30] that each L¢ is an irreducible representation of %/ (G, Z) and
that L® = L7 if and only if ® and 7 lie in the same G-orbit.

THEOREM 3.3. Z (G, Z) is type I if and only if the orbit space
Z|G is T, and all the isotropy subgroups are type I.

Proof. If Z/G is not T,, there exists an ergodic positive Borel
measure « on Z which is not concentrated on any orbit [5, Theorem

2.6]. By Lemma 3.2 and [5, Lemma 4.2], L = S Leda(®) is a factor

representation of Z(G, Z) not of type I. Also, szince a factor repre-
sentation W of an isotropy subgroup induces a factor representation
L of Z7(G, Z) of the same type, the commutants of L and W being
algebraically isomorphie, Z/(G, Z) is not type I if there is a nontype
I isotropy subgroup. Conversely if Z/G is T, every factor represen-
tation L =<V, M) is induced from an isotropy subgroup by the
Imprimitivity Theorem, since the projection-valued measure M is ergodic
and thus concentrated on an orbit. If in addition all the isotropy
subgroups are type I, so therefore is Z/ (G, Z).

4. On the type of .%. Let a be an ergodic quasi-invariant
probability measure on Z, g-a the measure defined by g-a(4) = a(g—A4),
ge @, A Borel= Z, and A,(-) the Radon-Nikodym derivative d(g-a)/dc.
Let (W, P> be the system of imprimitivity based on (G, Z) and acting
on LXZ, da) by

(W@N)P) = N(@)Ef(97'P) »  (P)F)P) = MP)F(P) »
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9€G,peZ he L*(Z)and f e L Z, da). Denoting by U the left regular
representation of G on L* @), we consider the type of the W*-algebra
& on LXG)Q L*Z, dx) generated by the operators U(g) ® W(g) and
IQ P(h), g€ G, he L*(Z). Our definition of .o~ is the same as Kallman’s
[10] except for modifications due to our preference for left rather than
right action of G on Z.

LeMMA 4.1. &7 is spatially isomorphic to the W*-algebra generated
by the representation L* of Z/ (G, Z) determined by o, X da in D(G X Z).

Proof. The natural map of the algebraic tensor product 22 (G) ®
% (Z) onto a dense subspace of (G x Z) clearly extends to an
isometry of L¥G) Q LXZ, da) onto L*G X Z,dg x da). By the proof
of Theorem 5.3 of [13], A can be chosen to be jointly measurable on
G x Z and it is then clear that under the above isometry the system
of imprimitivity C<UQ W, IR P) is transformed into the system {V’,
M’ given by

(V@) )T, P) = N(P)Ef (97, g7'P)
and
(M'(h) )X, P) = @) f(t, ),

9,teG,peZ he L=(Z) and feLXG x Z,dg x da). For fe 27 (G X
Z) define (Rf)(g, ®) = f(g, PIA,(P)'®. Rf is measurable on G x Z.
Since

[ §.170. 9 n@a@ias = | | 176, 09 da@ris

and k(g, ®) = f(9, 9®) lies in 22" (G x Z), Rf is square-integrable. Rou-
tine calculations verify that R extends from .2 (G x Z) to an isometry
of 57+, the Hilbert space of L% onto L*(G X Z, dg X da) which
transforms the system of imprimitivity given by

(V@A) P) = flg7't, 97'9) and (M(R)S)E, P) = MP)f(E, P),

t,9eG, peZ, he L*(Z) and fe 22 (G x Z) into <V', M'). To check
that V transforms into V'’ requires use of the identity

Mt P) = NP (s7'P) a.e. (da)

for each s, te G. As (V, M) is precisely the system of imprimitivity
on 57* determined by 4, X da (see formulas 4.4 and 4.6 of [6]) and
as {V, M) generates exactly the same W*-algebra as the corresponding
representation L* of Z/ (G, Z), we are done.

Now let .27 denote the W*-algebra generated by the representation
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L. Henceforth, we assume that a is concentrated on a G-invariant
Borel set in Z all of whose points have the same isotropy group H,
which is a priori normal in G. The more general case in which it is
assumed merely that all isotropy subgroups are conjugate can be
reduced to the above case [1, Chapter II, §2]. If 7 is a representation
of H, we denote by ¢g-m the representation (g-7)(h) = w(9~*hg). We
shall obtain a direct integral decomposition of .2~ and then use the
following lemma to prove that, under additional hypotheses on H, .&
has no type I component if « is nontransitive. We denote by [<Z, €]
the W*-algebra generated by operator algebras < and <&, by <%’
the commutant of <& and by 2 <% the center <% N <7’ of <Z.

LeMMA 4.2. Let <& be a W*-algebra on o Hilbert space 57 and
& a commutative subalgebra of <Z'. If <& has a type I component
then so does & = [F, ¥].

Proof. We use the notation of [4, Chapter I, §2, n’1] for induced
and reduced algebras. <Z has a type I component if and only if there
is a nonzero projection F' in 2 <# and an abelian projection E in <%,
whose central support is the identity (relative to <#, on the Hilbert
space F'57) [4, Chapter II, §8, n°1, Corollary 1 and n°2, Theorem 1].
We shall show that the projections F' and FE satisfy the same pro-
perties for < as they do for & 8Since 2% = Z N(Z N F') <
aNE'NF)Y= 2, Fe Z . %5isclearly a commutative algebra
commuting with <z and by [4, Chapter I, §2 »’1, Proposition 1], &,
is generated by &% and <%, and (&) is generated by elements of the
form KEBCE, Be &%, and Ce &%. This is because products of the
form BC, Be &, Cc &5, form a generating subset of <, closed under
involution and multiplication. That (&25); is abelian follows easily
now from the hypothesis that (<Z); is abelian and from the fact that
E lies in <&, and thus commutes with &%. Since Fe #, & & K
clearly has central support equal to the identity with respect to the
larger algebra <., and we are done.

THEOREM 4.3. Let « be a nontransitive ergodic quasi-invariant
probability measure on Z, and assume that almost all (da) points of
Z have the same isotropy subgroup H. If the lefi regular representation

T of H can be decomposed as a direct integral T = ngfd'Y of irre-

ducibles T7 on 577, so that a.e. (d7), g+ T7 is unitarily equivalent to
Tr for all ge G, then & has no type I component.

Proof. We note first that the hypotheses on T are certainly
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satisfied if H is central in G. In any ecase, since H is normal in G,
dgly = 4z and 8, x da € D(G x Z) is induced from the measure 8, x da e
D(H x Z) (see formula (2.2)). Thus L* is induced from the representa-
tion R* of Z/(H, Z) determined by 4, x da in D(H x Z). By applying
Lemma 4.1 to B* one obtains a unitary equivalence between R* and 7* =
KTRIIRQ) on L(H) Q L*Z, da), where Q is the natural projec-
tion-valued measure from Z to L*Z, da). As H leaves almost all (da)
points of Z fixed, each <T"Q I, IQ Q> is a system of imprimitivity,
based on (H, Z) and acting on 5#" ® L*Z, da). Denoting by o’ the
corresponding representation of Z/(H, Z) and by ind o7 the induced
representation of Z (G, Z), we have by Lemma 2.4 and its proof a

unitary equivalence L~ = S ind o7dv. If .97 had a type I component so
r

would [.o7, L™(I", dv)] by Lemma 4.2, and therefore [4, Chapter II, §3,
Exercise 1] so would the representations ind ¢7 for v in a set of
positive measure on I". We shall use Lemma 4.2 of [5] to verify that
in fact ind ¢7 is a.e. (d7) a nontype I factor representation, and the
theorem will be proven. @ has a natural direct integral decomposition

Q) = SZQw(h)da@), where Q¢(k) is multiplication by h() on C,he

L>(Z). Fix vel'. The system of imprimitivity <T" ® I, I QY @*), or
simply <{T", Q*>, on 27" ® C = 277 determines a representation z¢ of

Z (H, Z) and again by Lemma 2.4, ind " = S ind r¢da(p). It follows
z

from Theorem 2.1 of [9] and the discussion preceding that theorem
that each ind ¥ is an irreducible representation of Z/ (G, Z), since T"
is an irreducible representation of H, and furthemore that ind z¢ is
unitarily equivalent to ind z7 if and only if ¢ = g.» and 7" = g.T"
for some ge G. If g-T" = T7 for all g€ G, ind ¢ = ind 77 if and only
if @ and 7 lie in the same G-orbit. « is thus ergodic with respect
to the relation of unitary equivalence among the components ind ¢
of indo’, and by Lemma 4.2 of [5] ind o7 is a nontype I factor
representation. By hypothesis, this is true a.e. (dv) and we are done.

5. On the type of & (continued). We derive necessary and
sufficient conditions for .~ to be semi-finite, under the assumption of
a common isotropy group H which is type I and unimodular. Our
proof is modelled on Dixmier’s in [3, §§10-12], where the case of free
action is considered. As there, we assume that the Radon-Nikodym de-
rivative d(g-a)/da = \,(+), considered as a function on G x Z, is conti-
nuous and strictly positive. With no loss of generality, we also assume
that support @ = Z. We start with the realization of .o as the W*-
algebra on L*(G x Z, dg x da) generated by {V(g), M(h):g9eG, he
L~(Z)}, where
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(V@) ¢, P) = (@) f (g7, 97'P) and
(M) f)(E, ) = MP)fE, P), felXG x Z,dgxda) .

(See the proof of Lemma 4.1, where V and M are denoted by V' and
M)

(5.1)

For fe 2 (G x Z), define

(5.2) Fi(g, P) = 4(9)7"n,(®)'*f (g, #) and
£(g, P) = 4(9) "\ (@) F (g7, ¢7'P) .

Also, let (W, N> be the system of imprimitivity on LG x Z, dg X
da) given by

(5.3) (W) N)(t, ) = 4(g)"*f(tg, #) and
(N(h) f)(t, P) = ht™'P) f(t, P) .

Our definitions differ from Dixmier’s due essentially to our preference
for left action of G on Z. Denote by L and R the representations
of Z (G, Z) corresponding, respectively, to (V, M) and (W, N).

LemMaA 5.4. (G x Z), with f? and f° as in (5.2), convolution
as multiplication and inner product as in LG x Z,dg X da), is a
quasi-unitary algebra with underlying Hilbert space LG X Z,dg X
da). Its left algebra #' is 7 and its right algebra #T = (#Y
18 the algebra generated by (W, N).

Proof. That the conditions on [3, p. 277] are satisfied can be
verified as in [3, Proposition 9] and we omit the computations. For
fe (G x Z), denote by 7'(f) and m"(f), respectively, the bounded
operators on LG x Z,dg x da) of left and right convolution by f.
FP' and 2" are, respectively, the W*-algebras generated by all z*(f),
(), fe (G x Z) (see [3, p. 278]). The remainder of the lemma
follows by use of (2.1) to verify that L(f) = #’(f-\'* and R(f) =
7 (feen""?) for all fe (G x Z).

We denote by J the positive self-adjoint extension of f — f4, by
S the isometric extension of f — f* [3, p. 278], by P*(P") the set of
operators in #Y(#") commuting with J, and by Q(Q") the operators
in ZY#Z") commuting with all of P{(P”"). Theorem 2 of [3] and
Theorem 1 of [17] yield the following: 2! is semi-finite if and only
if there exist (unbounded) positive invertible self-adjoint operators
A and A’ belonging to <#Z' and &7, respectively, so that A’ = SAS
and J is the minimal closed extension of A(A4')™%, and if this is the
case, then 4 and A’ belong to @' and Q", respectively, and Q' < P,
Q" < P'. As in [3], we derive necessary and sufficient conditions for
A, A’ as above to exist in terms of the action of G on some measure
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space (B, db) by investigating how A and A’ correspond to the operators
of multiplication by certain elements of L~(B, db). In the case of
a nontrivial isotropy subgroup H, this necessitates an examination of
various direct integral decompositions. We assume familiarity with
the notation and results of [4, Chapter II, §§1-3]. If 7 is a represen-
tation of a group K, we denote by m(K) the W*-algebra generated by
{r(k): ke K}.

LXG x Z,dg x da) is naturally isometric with the direct integral
over (Z, da) of the constant field of Hilbert spaces ¢ — 52 (9) = L*G),
with the algebra M corresponding naturally to the algebra of diago-
nalizable operators. Denote by & the algebra on L*(G x Z, dg x da)
generated by multiplication by bounded Borel functions on G X Z and
by &4 the subalgebra generated by the bounded Borel functions
on G/H x Z, considered as functions on G x Z. Let V and W
denote, respectively, the left and right regular representations of G on
LAG (W (9) £) (@) = 4(9)**f (tg)), and M(G)(M(G/H)) the algebra on LXG)
generated by multiplication by bounded Borel functions on G(G/H).
Then clearly (see (5.1) and (5.3)) the W*-algebras &, &, [, V(H)],
[, 2 V(H)] and [M, 2 V(H)] are all the direct integrals, respectively,
of the constant fields of W*-algebras @ — M(G), M(G/H), [M(G), V(H)],
[M(G), 2 V(H)] and 2 V(H) on L*(G). Also, each operator W(g)

decomposes as SZW(g)da(gD).

LemmA 5.5. If H is unimodular, then Q' = [M, 2" V(H)].

Proof. It follows from (5.1) and (5.2) that M < P* and that V(H) &
P! for H unimodular. If Ae @ & #' = ("), then Aec[W(G), N]
by Lemma 5.4, and Aec[M, V(H)]' by the preceding remark. By
modifying the proof of [3, Lemme 26] so that instead of dealing with
compact subsets K, K’ of G one deals with subsets of the form KH,
K'H, K and K' compact, it follows that [M, N] = ¥ N V(H) = &#.
As (ZnNVH)Y) =<', V(H)] =<, V(H)] we have Aec[M, N =
[<£ V(H)]. Thus A = SZA(sv)doz(@), A(p) € [M(G), V(H)] a.e. (de), and
we must show A(@) e 2" V(H) a.e. (do). From the fact that A ¢ V(H)’
it follows that A(®)e V(H)' a.e. (da), and from the fact that Ac
(W(G))’ N & it follows that A(@) e (W(GR)) N (M(G/H)) a.e. (dx). By
a commutation theorem of Takesaki [19, Theorem 3] the latter algebra
is exactly V(H) (note that the left and right coset spaces G/H, H\G
are identical) and we are done.

We now decompose L*G) explicitly with respect to the abelian
W=-algebra 2 V(H). Choose left Haar measure dh and dg on H and

G/H, respectively, so that ng(g)dg :X SH flghydhdg, for all fe

GlH
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22 (G). Let o denote a Borel cross-section from G/H to G with
o(g) = e, and let 7(g) = a(g)™g, so that every ge G may be written
uniquely ¢ = a(g)7(g), 7(9) € H. Define 6(g) by

|, 7lahg™ydn = 6@ s, £ e .2 (H)

and denote by U, the isometry of L*(H) into itself given by (U, f)(k) =
8(9)*f(g*hg). Let V be the left regular representation of H on L*(H)

and SAn('Y)Rfd“/ its canonical central decomposition. (G, H) is a Borel
H
transformation group [18, Theorem 2.4].

LEMMA 5.6. LAG) is isometric with the direct integral over (G/H,
dg) of the constant field of Hilbert spaces §— L*(H). The operator
U implementing the isometry is (Uf)(g, h) = f(e(®h), f € L} (G). For
s e LXG/H, dg, L}(H)), (U'2)(g) = 2(g, 7(9)). Furthermore,

vV U = (@@ Vg

and (6@ - V)h) = U V(h) U,;, so that 2 V(H) is transformed by
U into

{S U AU, -dg: Ae 2 V(H)} .
GIH

2 V(H) is invamiA(mt under A — U;5AU,;, and if Ae 2 V(H) corres-
ponds to fe L=(H, dv), U;i5AU,; corresponds to the fumction g~*-f,
gwen by (97 f)(7) = f(g-7).

Proof. All of the statements except the last are either standard
results or can be verified easily by direct computation. We note that
s € L*(G/H, dg, L*(H)) can indeed be congidered as a jointly measurable
function on (G/H X H,dg x dh) by [11, Lemma 3.1]. For the last
statement of the lemma see, for example, {1, Introduction, Proposition
10.2].

REMARK 1. The automorphisms A — Us5;AU,; of 2 V(H) into
itself define an action of G/H on 2 V(H), for if heH, U, is the
product of a left and a right translation by elements of H and thus
commutes with 2 V(H) [3, Theoreme 1]. Thus G/H is an auto-
morphism group on (H, dv), as indeed it is on (Z, da), but we shall
continue to regard G as the group acting on these spaces. Since H
acts trivially and is unimodular, however, the following equalities,
which we shall use shortly, hold: o(g)® = g®, 4(d(g)) = 4(9), Moy = N,
and 8(a(g)) = 0(9),9e G, PeZ.
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REMARK 2. We shall use Lemma 3.1 of [11], without further
explicit mention, to identify L*(X, dx, LXY, dy)) with L}(X < Y, dx x
dy) and the space of essentially bounded measurable functions from
(X, dx) to L=(Y, dy) with L*(X x Y, dx x dy), where (X, dz) and (Y,
dy) are each one of the spaces (Z, da), (G/H, dg) or (H, dv).

By Lemma 5.6 and the discussion preceding Lemma 5.5, an operator
Ae[M, 2 V(H)] corresponds, after direct integral decomposition of
LXG x Z,dg x da) over (Z,da) and (G/H, dg), to

() [ [, U A@ Updgdate), Aw)ez V) .

But after decomposition over (H, dv), A(®) corresponds to multiplication
by f¢eL~(H,dv) and U;;A(®)U,; corresponds to multiplication by
g~ f9. Regarding f(®,7) = f?(v) as an element of L=(Z x ﬁ, da x
dv), which may involve changing values of f on a (da x dv) null set,
we have A corresponding to multiplication by m(®, g, v) = f(®, g+7).
We now examine what SAS and J correspond to, and we shall obtain
our final result.

LEMMA 5.7. Let A and f be as above. After decomposing over
Z,G/H and H, SAS corresponds to multiplication by k(®, g,7) =
Fg™'p,v) and J corresponds to multiplication by

(P, , V) = A(g) TN (P

Proof. The result for J follows directly from (5.2). Let U, be
the isometry implementing the decomposition over Z and G/H. For
re X Z x G,da x dg), (Ur)(®, g, k) = r(®, o(g)h), and for re L¥Z X
G/H, da x dg, L*(H)), (U'r)(®, 9) = v(@, g, )(9)). UAU* is given by
(*). We shall compute U,SU;* and then

") U(SAS)U = (USUr WU AU NUST) .

Although the computation of U,SU;* and other operators by pointwise
evaluation yields (pointwise) formulas valid only a.e., these formulas
still uniquely determine the element of L=(Z x G/H x H, da x dg X
dv) to which SAS corresponds. Thus we may for simplicity ignore
a.e. considerations. For re L*Z x G/H,dx x dg, L*(H)), it can be
verified directly that

(USU )P, g, h) = 4(g)7"*\ (@) r (g~ 'P, g7, (b 0(§)7)) -
Now

(ho(g9)™) = o(g™) T h e (@)
= (6@ "R o(N(e(@) T e(@T) -
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Defining @(g) = o(~)"o(§)™* and an operator S on L*(H) by (Sa)(k) =
@(h™*), one can compute directly from the above formulae that

(USUTr) (9, 9)
= (4(g)0(g)" N ()2 U, 5-1 V(@(9))S)(r(g~*, §7)

as elements of L*(H), and again by direct computation and (x*) it
follows that

(USASU'r)(2, 9)
= (Usz—, V(2(9))S Usi7-1,A(97'P) U, 5-1, Usz V(@(g)S) (@, ) -

It is clear that SS = I on L*H), and therefore the operator on L*(H)
given by the right-hand side of the above equation equals the product
T.T,T,, where

T, = U,5-) V@(@)S U545,

T, = SA(g~'»)S and

T, = SU,G U V(@(gﬂ))s .
Now A(g~'p)e 2 V(H) and thus SA(g~'9)S = A*(g~'p) e 2 V(H) by
[3, Corollaire, p. 283]. By a tedious but straightforward computation,
one checks that T, = V(®#(¢™)) and thus

TxTsz = Tz(Tsz)
= A*(g'P) (U, V(@(g)S U,z V(@(™)S) .

But 7.7, equals the identity (again a straightforward computation)
and we have finally that

(USASU'r) (@, §) = A*(g7'P)(r(®, 7)) -
Thus SAS corresponds to k(®, g, 7) = f(g7'®, 7) and we are done.

THEOREM 5.8. .7 1s semi-finite if and only if there exists a
positive measurable function v on (Z x H,do x dv) such that

'11/‘(@, gfy) — A( —1 3
—D T = A(gTN(P) a.e. (dgxdaxdy) on G X Z X H.
¥(g7'P, V)

Proof. See [3, Theoreme 7 and Proposition 12] for the proof.
Also see [3, Remarque 1, p. 318] for a slight strengthening of the
theorem and [3, Remarque 2, p. 319] for the measure-theoretic signif-
icance of the hypothesis on +r.
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