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A function f defined in a domain D is n-valent in D if
f(z) — w, has at most n zeros in D for each complex number
wo. The purpose of this paper is to show that a sufficient
condition for a holomorphic function f in |z| <1 to have
angular limits almost everywhere on |z| =1 is that there
exist a positive integer # and a positive number 7, such that
f is m-valent in each component of the set {z:|f(z)| > 7o}.

We have previously shown that the same conditions on f imply
that f is a quasi-normal function of order at most n — 1 [3, Theorem
2], and f has angular limits at a dense subset of [z] = 1 [3, Corollary
1]. Note that the bound 7 on the valence of f is the same for each
component of {z:|f(2)| > r}. This uniformity on » is essential to the
conclusion that f has angular limits almost everywhere on |z| = 1;
for we have shown in the example in [2] that if the uniformity is
dropped, then f need not even have asymptotic values at a dense
subset of |z = 1.

If w = f(2) is a nonconstant, holomorphic function in |z]| < 1, we
denote by F the Riemann surface of f~' (as a covering surface over
the w-plane). If S is a subset of [z| =1, then m(S) denotes the
Lebesgue measure of S.

A Jordan arc T = {z = h(t): 0 < ¢t < 1} lying in a domain D is a
crosscut of D if h(t) —z,€0D as t | 0, h(t)—2z€0D as t ] 1, and
2, # 2. If z,=2, then T is a loopcut of D.

If a holomorphic function f in |z] < 1 is m-valent in a component
D(r) of the set {z:|f(2)| > r} then the connectivity of D(r) is as most
n + 1[3, Lemma 3]. We denote by D*(r) the simply connected domain
obtained by adding to D(r) those (at most %) components of {z: | ()| < 7}
that punch holes in D(r).

LEMMA 1. Let f be a nonconstant, holomorphic function in |z| <1
that is n-valent in each component of the set {z: | f(2)| > r}. For each
r > 1y let {Dy(r)} denote the at most countadble collection of components
of {2:1f()| > r}. Then there exists a countable subset E of (r,, =)
such that 0D} (r) is a Jordan curve for all k and all re (r,, ) — E.

Proof. Define a set R = {r:r > r, and F has no branch points
lying over the circle |w| = 7}. Then the set (r, <) — R is at most
countable. If »¢ R, then for each k, oD} (») N {|z] < 1} consists of at
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most countably many crosscuts and loopcuts T% of |z| <1 by [2,
Corollary 1].

We show that if for a fixed & there are infinitely many curves
T}, then their diameters tend to zero as j-— co. If the diameters
did not tend to zero, then the sequence {7} would have an accumula-
tion continuum in [2| =< 1. Sinece f is a nonconstant, holomorphic
function, {T%} cannot have an accumulation continuum in |2| < 1. By
[2, Theorem 3], f has asymptotic values at a dense subset of |z| = 1,
and hence, by a theorem of MacLane [4, Theorem 1], the sequence
{T%} of level curves cannot have an arc of |z| = 1 for an accumulation
continuum. Hence, the diameters of the curves T% tend to zero as
j— oo.

We still must show that there exists a countable subset E of
(ry, =) such that 0D;(r) has no double points for all £ and all re
(ry, =) — E. Suppose to the contrary that S is an uncountable subset
of R and that for each r ¢ S there exists a component D(r) of the set
{z: | f(z)] > r,} such that 0D*(r) has double points. This implies that
for each r € S, 0D*(r) contains a loopcut T,, since the curves comprising
D*(r) N {lz]| < 1} are Jordan arcs for all re R. The domain D*(r)
cannot be interior to a loopeut; for if it were, f would be unbounded
in D*(r) by the extended maximum principle, and, consequently, the
loopecut would determine two distinct asymptotic tracts ending at one
point contradicting [2, Theorem 2]. (See [4] or [2] for the definition
of an asymptotic tract.) Let G, denote the domain interior to the
loopeut T.. The uncountable collection of open sets G, must contain
a pair that intersect, say G, and G, where ¢ < s. Since the loopcuts
T, and T, cannot intersect inside [z| < 1, then G,C G,, and 7, and
T, end at the same point of |z| = 1. By [2, Corollary 1], T, and T,
determine at least two (since ¢ # s) asymptotic tracts ending at one
point contradicting [2, Theorem 2]. Thus, there must exist a countable
subset F of (r, ) such that dDj(r) is a Jordan curve for all £ and
all re{r,, o) — K.

LeMMA 2. Let f be a nonconstant, holomorphic function in |z) < 1
that is n-valent in each component of {z:|f(2)] > r}. If r. > », and
D(r) is a component of {z:|f(2)| > 7.}, then f has angular limits
almost everywhere on E(r) = D(r) N {z| = 1}.

Proof. We assume m(E(r,)) > 0, for, otherwise, there is nothing
to prove. For » < r, we denote by D(r) the component of {z: | f(z)| >
r} containing D(r), and we write E(r) = D) N {{z]| = 1}. We first
show that there exists se(r,r) such that 0D*(s) is a rectifiable
Jordan curve.

By Lemma 1, the set R = {r e(r,, ) such that F' has no branch
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points over |w| = » and 0D*(r) is a Jordan curve} is the whole interval
(ry, ) minus possibly a set of measure zero. Let C(r) = dD(r) N {|z| <
1}, and let I" be the family {C(+): r € B}. By passing to the Riemann
surface F, it is not hard to show that the extremal length of the
family I is bounded by 2nx log r,/r,, and this implies 6.D(r) is rectifiable
for infinitely many values re R (for example, see [2, Theorem 1]).
Thus, we can choose s e (r,, ) such that 6D*(s) is a rectifiable Jordan
curve.

By the Riemann mapping theorem and Carathéodory’s theorem on
boundary correspondence there exists a homeomorphism g of D*(s) onto
[£] £ 1 that is a conformal mapping of D*(s) onto |{| < 1. Since the
connectivity of D(s) is finite, | f(¢~({))| > s in some annulus ¢ < |{| < 1.
Hence, fog~' has angular limits almost everywhere on |{| =1 by a
simple extension of theorems of Fatou [1, p. 19] and F. and M. Riesz
[1, p. 22] on angular limits. Since dD*(s) is a rectifiable Jordan curve,
¢g~' maps a set of measure zero on |{| = 1 onto a set of measure zero
on 0D*(s) by a theorem of F. and M. Riesz 1, p. 50]. Thus f has
asymptotic values almost everywhere on E{(s) and hence angular limits
almost everywhere on FE(s) by [3, Theorem 3]. This completes the
proof of the lemma since E(s) D E(r).

LEeMMA 3. Let {I;} be a sequence of mutually disjoint open arcs
on |2\ =1, and let C=;I;, Let f be a conlinuous function on
{lz] < 1} U C that is holomorphic in |[z] < 1. Let | f(z)| = r, for z¢
C,1f(0)| > 7, and the set D = {z:|z| <1, |f()] > 7} be a connected
set whose boundary contains the circle (2| = 1. If f is m-valent in
D, then | f(0)] £ r,exp [27*n/m(C)].

Proof. Let v(r) be the level set {z: | f(z)| = }. The proof consists
of finding bounds on the extremal length A(/") of the family I =
{v(r):r, <r < | f(0)], and F' has no branch points lying over |w| = 7}.
By passing to the Riemann surface F, it can be shown that M) <
2nnflog | £(0)|/r, (for example, see [2, Theorem 1]).

By our hypotheses on f, each arc I; must be separated from
the point z = 0 by a level curve of {z:|f(z)| = r} for each » in the
interval (r, | f(0)). None of these curves can be relatively compact
curves encircling the point 2z = 0 by the maximum principle. Thus,
the Euclidean length of a level curve separating I; from 2z = 0 is
bounded below by min (2, (2/7)m(I;)). Hence, the Euclidean length of
each Y(r)e " is bounded below by (1/m)m(C). By considering the
linear density ©o(z2) defined to be 1 on D and 0 elsewhere, we can
easily obtain the inequality M7") = (1/z*)m(C)*. Combining the two
bounds on A(I") we have | f(0)| < 7, exp [27*n/m(C)?], which completes
the proof of the lemma.
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A point ¢ is a Plessner point for a function f defined in |z| <
1 if for every Stolz angle S at ¢, the cluster set of f at ¢ with
respect to the domain S is total.

THEOREM. A sufficient condition for a holomorphic function f
i |2] < 1 to have finite angular limits almost everywhere on [z] =1
18 that there exist a positive number r, and a positive integer n such
that f is m-valent in each component of the set {z:|f(2)| > r}.

Proof. Suppose to the contrary that the set of points of [z| =1
at which f does not have finite angular limits has positive measure.
Then, by a theorem of Plessner [1, p. 147] and a theorem of Priwalow
[1, p. 146], f must be a nonconstant function whose set of Plessner
points P has positive measure.

For each r > 0, let {D;(r)} denote the at most countable collection
of components of the set {z:|f(2)| > r}. By Lemma 1, there exists
r, > 1, such that éD}(r,) is a Jordan curve for each j and F has no
branch points over the circle |w| = 7. Thus, D} (r) N {|z] < 1} con-
sists of at most countably many level curves which are crosscuts of
lz| < 1. Write D; = D;(r), E; = D N{lz| =1}, and E} = {{z]| = 1} —
E;. Since by Lemma 2, f has angular limits almost everywhere on
U; E;, we can assume PC [); Ej}. Let w; be the harmonic measure
in D¥ of the set 0Df N{/#2| <1}. We need the following lemma whose
proof we postpone.

LEMMA 4. There exists a harmonic function v in |z| < 1 having
angular limit 0 almost everywhere on (; K, and ®;(z) = 1 — v(z) for
2eDfj=1,2, ).

Thus, there exists a point z,¢ P at which v has angular limit 0.
Then, by the definition of P, there exists a sequence {z,} of points
lying inside a Stolz angle at 2z, and converging to 2, such that | f(z,)| >
r, for each k and f(2,) — o as k— c. At most finitely many z, can
lie in the same component D; since z,€ PC (); Ej. Hence, we can
assume (by taking subsequences if necessary) that z;e D; ( = 1,2, «++)
and D, N D, = ¢ for j # k. By Lemma 4, w;(z;) —»1 as j— oo.

By the Riemann mapping theorem and Carathéodory’s theorem on
boundary correspondence, there exists a homeomorphism g; of D7 onto
|| < 1 that is a holomorphic map of D} onto |{| < 1 sending z; into
0. Applying Lemma 3 to the function #; = fog™ and the set C; =
9;(0DF N |z| < 1) we have |h;(0)| < r, exp[27*n/m(C;)’]. On the one
hand, %2;(0) = f(2;)— ~ as j— . On the other hand, m(C)) =
2w ;(97'(0)) = 2rw;(2;) — 27 as j — oo, and this implies A;(0) - - as
j— . Thus to complete the proof of the theorem, we need only
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prove Lemma 4.

Let u; be the harmonic measure in |z] < 1 of the set E}, and let
() = Sk, 1 — u;(z). Clearly, {v,} is an increasing sequence of
nonnegative harmonic functions, and v, has angular limit 0 at each
point of the set M, E}. Since the set Df N D} can contain at most
two points for 5 # ¢, each point e” lies in at most one of the sets
E,E, ---, E, for all but finitely many values of # in the interval
[0, 27). Hence, Tim,_,:» v,(2) <1 (k = 1,2, - +) for all but finitely many
values 6¢]0,2r). It follows from the extended maximum principle
that v,(2) <1 for |2| =1k =1,2,---). By Harnack’s theorem, the
sequence {v,} converges in |z| <1 to a bounded harmonic function
v(). Let I =1{0:0=<0 < 2rm, ¢’ N; E}, and v, v, v,, --- have angular
limits at ¢}, Then, writing v(e”) for the angular limit of v at €%,
we have

glv(e”’)dﬂ = Lv(e"") — v,(e?%)db

< g“v(ei% — v,(e")do
v(0) — v,(0) .

Thus, v has angular limit 0 at ¢ for almost all 6¢ I, since v(0) —
1,(0) =0 as k— . Since the set M; E; — {¢’: e I} has measure
zero by Fatou’s theorem, v has angular limit 0 almost everywhere on
N; Ej. Clearly, v(2) = v;(z) = 1 — u,;(2) for all j and |2z| < 1, and by
Carleman’s principle of domain extension, ®;(z) = w;(z) for ze D} (j =
1,2, ...). This completes the proof of Lemma 4 and hence of the
theorem.

REMARK. The conclusion of the theorem raises the following
question. Are all functions that satisfy the hypotheses of the theorem
of bounded characteristic? This seems to be a difficult question to
answer. The best we can presently show is that T(r) = o(1/1 — 7),
where T is the Nevanlinna characteristic of f.
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