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Results of H. P. Rosenthal and the author on w*-basic
sequences are combined with known techniques and applied
to quasi-complementation problems in Banach spaces.

1. Introduction. Recall that (closed, linear) subspaces Y, Z of
the Banach space X are quasi-complements (respectively complements)
provided YNZ = {0} and Y + Z is dense in X (respectively, Y +
Z = X).

Suppose that Y, Z are quasi-complements, but not complements,
for the separable space X. We show that there exist closed subspaces
Y, and Y, of X with Y,c YC Y,, dim Y/Y, = o = dim Y,/Y, such
that Y., Z are quasi-complements and Y, Z are quasi-complements.
This generalizes a theorem of James [5], who proved the existence
of Y, for the case of general separable X and the existence of Y;
for separable, reflexive X. Our proof uses James’ method (and w*-
basic sequences), but seems simpler than James’ construction. Also,
our argument provides information for some nonseparable spaces.

We show also the following.

THEOREM 2. Suppose Y is a subspace of X and Y* is weak*-
separable. If X|Y has a separable, infinite dimensional quotient space,
then Y is quasi-complemented in X.

Theorem 2 was discovered by J. Lindenstrauss and H. P. Rosenthal
[unpublished], both of whom apparently use an idea from [3]. Our
argument uses w*-basic sequences and Rosenthal’s proof of Theorem
2 in the case where X/Y has a reflexive, infinite dimensional quotient
(cf. [12).

The final result of the paper is that every subspace of a separable
conjugate space admits a weak*-closed quasi-complement which is
spanned by a boundedly complete w*-basic sequence.

The notation and terminology agree with [6]. In particular,
subspaces and quotients are assumed to be infinite dimensional and
complete. For Ac X, A* is the annihilator of A in X*, while for
Bc X*, B° is the annihilator of B in X and B is the weak*-closure
of Bin X*.

II. THE THEOREMS. We recall the definition of w*-basic sequence
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[6]: A sequence (y,) C X* is called w*-basic provided that there exists
(%,) € X Dbiorthogonal to (y,) and, for each ¥ in the weak*-closure [&:]
of the closed linear span [y,] of (y,), ¥ = w*-lim, >~ y(x)y..

In [6] it was proved that, when X is separable, if (y,) < X*,

yn-i”lo, but lim inf ||y,|| > 0, then (y,) contains a w*-basic subse-
quence. Let us note that the same result is true when X admits a
weakly compact fundamental set. Indeed, in this case there exists by
[1] a norm one projection P on X with PX separable and (y,) < P*X*.
P*X* is isometric to (PX)* and the relative weak* topology on P*X*
from X* agrees with the weak* topology on P*X* considered as the
conjugate of PX. Therefore, the above mentioned result from [6]
applies to show that (y,) has a w*-basic subsequence.

PFirst we prove the extension of James’ theorem:

THEOREM 1. Suppose that Y, Z are quasi-complements, but not
complements, for X.

(a) If Y has a weakly compact fundamental subset, then there
exists a subspace Y, of Y with dim Y/|Y, = ~ and Y,, Z are quasi-
complements.

(b) If X/Y has a weakly compact fundamental subset (in par-
ticular, if X does), then there exists a subspace Y, of X with Y,D Y,
dim Y,/Y = oo, and Y,, Z are quasi-complements.

Proof. Pick positive numbers (a,) less than 1 so that a, + a,a, +
005 + +»+ < oo. Let p be a bijection of N x N onto N (N is the
set of natural numbers) so that for each n and j, p(n,j) = J.

To prove (a), we use the fact that Y + Z is not closed to select
unit vectors (¥,) in Y with d(y,, Z) = inf {||y. + z||: 2€ Z} — 0. Since
YNZ={0},0 is the only possible weak cluster point of (y,), and

hence either y, ., 0 or the weak closure of (¢.) is not weakly com-
pact. Thus, by either [2] or [11], (y,) has a basic subsequence,
which we also denote by (¥.).

Let (y7) be a bounded sequence of functionals in Y* biorthogonal
to (¥,). Since Y admits a weakly compact fundamental set, the unit
ball of Y* is weak* sequentially compact (cf. [1]), so we may assume,

by passing to a subsequence, that y;} AN y*. (yr — y*) converges w*
to 0 and is bounded away from zero, so it has a w*-basic subsequence.
Thus by passing to a subsequence of (y,, ¥ — ¥*), we have that there
exists a biorthogonal sequence (z,,«}) in Y with ||z.|| =1, (|zx]])
bounded, d(z,, Z) < n'a,a,a, + - @,, (%,) is basic, and (x}) is w*-basic.
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Let Y, = [(#!)7 U (@@n,) — Zpimi+)im=:]- (The annihilator of (a)
is of course taken in Y.) We claim that Y, N [2,w,,] = {0}- To see
this, first note that w} = 2%, + @&5me + .02 .. + +++ is absolutely
convergent, w}(%ym,,) = 1, while wi(%,.) =0 when 7% m. By
construction, Y, (w})", and (w})* N [(%y,1,)] = {0} because (@41 is
basic under some ordering and (%, w}) is biorthogonal. Hence,
Y. N [%,n,] = {0}, whence dim Y/Y, = oo.

We complete the proof by showing that Y, + Z is dense in X.
Now (x})° + [«,] is dense in Y because (x}) is w*-basic, so we need
show only that (x,.,,,)C Y, + Z. But

Lpinry — O (ORpin,1) = Bpra,n) — (G02) T (@epin,ny — Tpim,n)
— eee = (@85 0o B HARpin,sy = Bpta,itn)

= (W0 * 0 B) " Tpim,igny o

Since  d(®pin,540, Z) = (1, J + D78 o0+ Cpninny S 0 + D700, 00+ @,
it follows that d(@, ..., Y1 + Z) £ (§ + 1)™. Since j is arbitrary, this
completes the proof of (a).

The proof of (b) is very similar to the above: Since Y, Z are
not complements, Y* + Z* is not closed in X*. Thus there exists
a sequence (y}) of unit vectors in Y+ with d{y}, Z*) — 0. Of necessity,
y;“—iﬂlo. Now Y* = (X/Y)* in the canonical way, so (y}) has a
w*-basic subsequence. Hence for an appropriate subsequence (x}) of
(y}), we have that there exists a biorthogonal sequence (%,, #}) in X
with (| x,||) bounded, ||z} || =1, (®}) C Y, (x}) w*-basic, and d(z}, Z+) <
nlaa, 000 .

We define Y, to be the weak*-closure of [Y* N (®,)* U (@i®}n.q —
Thmian)mioi]e Since Y Y*:, wehave Y,0 Y. To show that dim Y,/
Y = oo, it clearly suffices to prove that Y; N [m = {0}. But note
that ¥, = Tpn,) + GATpin,n + C00B0n,s + ¢+« 1S absolutely convergent,
2X.uW,) =1, while #},.,(, =0 when m = n. By construction,
Ya)* D (WT5n,5y — Tpnisn)miz and (¥,)* D (2,)*, hence (y,)' D Y. But
W.)" N [@5n0] = {0} because (%) is w*-basic in some ordering and
(Y, Tkin,1y) is biorthogonal.

Since Y NZtc Yt NZ* = {0}, we have that Y, + Z is dense
in X. To show that Y,N Z = {0}, we prove the equivalent fact that
Y + Z* is w* dense in X*. But Y* N (x,)* + [2}] is w* dense in
Y+ because (x}) is w*-basic, so we need only show that each z},
is in the closure of Y; + Z. To see that this last statement is true,
write



116 WILLIAM B. JOHNSON

Brn — O [2 0 — Thna] — (@0) T — Fhinn] — ¢ ¢
- (axaz e aa’)—l[aix:(nyi) - x§<n,j+1)]

- (ala2 e aj)—lx;;{n,j—}—l) .

Since d(x}n, i1, Z) = (M, J + D70+ o+ Qppnyjeny = (0 + D7y -0+ @y, we
have d(x},., Y;: + Z) < (7 + 1) for arbitrary j.

Next we prove the result of Lindenstrauss and Rosenthal.

Proof of Theorem 2. Since X/Y has a separable quotient, there
exists a biorthogonal sequence (z,,xz}) in X with (z})c Y-, (2}) w*-
basic, and normalized so that [|z,|| = 1. Since Y * is w*-separable, a
biorthogonalization argument (cf., e.g., [8] or [7]) shows that there
exists a biorthogonal sequence (y,, ¥;) for Y with (y})c X*, Y N (y}) =
{0}, and normalized so that ||y}|| = 1.

Define T: X — X by Tz = S, 27" y*(@)x,. Then ||T| < 1/2, so
I+ T is an isomorphism. Hence (I + T)* is a weak*-isomorphism on
X*, whence (zF + T*z}) is a w*-basic sequence w*-equivalent to (z}).

Computing T *x}, we have T*x}(x) = xf Tw = x} Do , 27" i (x)x, =
27k (x); 1., Tk = 27 'yl

We claim that (2} + 27" 'y¥)* is a quasi-complement to Y. First
we show that Y* QM] = {0} (so that Y -+ (xF + 27" 7'y})"
is dense). But if z* GM], then, since (xF + 27" "'y}) is w*-
equivalent to (x}), we can write o* = w*-lim, .. >, oz + 2, 27 'qyf
for some sequence («;) of scalars. Thus for each n,2*(y,) = 2" 'a,,
hence, since 2*e Y+, a, = 0.

We complete the proof by showing that Y N (zf + 27 'y¥)" = {0}.
For suppose ¢ is in this intersection. Since ye Y, x}(y) = 0 for each
n. Hence y¥(y) = 0 for each n, whence ye ()N Y = {0}.

THEOREM 3. Suppose X* is separable and Y is a subspace of
X* with dim X*|Y = . Then there exists a weak*-closed subspace
Z of X* with Y, Z quasi-complements and Z = [z,] for some boundedly
complete, w*-basic sequence (z,).

Proof. Mackey [8] showed that Y has a quasi-complement, say,
W. Let (w,, w}) be a biorthogonal sequence in W with ||w,| =1
and [w,] = W (cf. [9]). By Theorem III. 2 of [6], there exists a
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biorthogonal sequence (x,, 2¥) in X with (z}) C Y, (z}) boundedly com-
plete and w*-basic, normalized so that ||z,| = 1.

Define T: X— X by To=> 7,27 "'w,(x)x,. Then||T||<1/2,s0 [+ T
is an isomorphism and hence (I + T)* is a weak*-isomorphism. One
checks that T*x} = 27"'w,, so that (x} + 27""'w,) is a w*-basic
sequence w*-equivalent to (z}). Letting Z = [a} + 27 'w,], we have
by Proposition 1 of [6] that Z is weak*-closed.

Certainly Z + Yo (w,), so Z+ YD Y + W and thus is dense.
Suppose thatze Z N Y. Then z = >, a, (xF + 27" 'w,) for some scalars
(,) because (xf + 27" 'w,) is basic. Hence also >\, a,x} converges,
whence z — D> a,xf = >2 27" w, is again in Y. Certainly

- 27", is also in W so that >0, 27" 'w, = 0. Thus @, 27" =
wiSe, a2 'w,) = 0, so that z = 0.

REMARK. Separability of X* in Theorem 3 is essential to get
that Z is weak*-closed. Indeed, regard m = [*. Rosenthal [12]
showed that ¢, is quasi-complemented in m. However, if Z is a quasi-
complement for ¢, in m, then Z cannot be weak*-closed. For if Z
were w*-closed, then m/Z would be isomorphic to (Z7)*. But m/Z
is separable, hence reflexive (cf. [4]). Thus Z° would be a reflexive
subspace of I, a contradiction (cf., e.g., [10]).
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