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In 1961, A. Wagner proposed the problem of determining
all the subgroups of PΓL(n> q) which are 2-transitive on the
points of the projective space PGin — l,q), where n ^ 3. The
only known groups with this property are: those containing
PSL^n, q), and subgroups of PSL(4, 2) isomorphic to A7. It
seems unlikely that there are others, Wagner proved that
this is the case when n ^ 5. In unpublished work, D. G.
Higman handled the cases n — 6, 7. We will inch up to n S
9. Our result is that nothing surprising happens. The same
is true if n = ra + 1 for a prime divisor r of q — 1.

One of Wagner's results is that it suffices to only consider
subgroups of PGL{n> q). Once this is done, it becomes simpler
to view the problem as one concerning linear groups: find all
those subgroups G of GL(n, q) which are 2-transitive on the
1-spaces of the underlying vector space V. Our approach is
based primarily on three facts. (1) Wagner showed that the
global stabilizer in G of any 3-space of V induces at least
SL(3, q) on that 3-space. (2) Unless G ̂  SL(n, q) or n = 4,
q = 2, and G ~ A7, no nontrivial element of G can fix every
1-space of some w-2-space of V. (3) G ̂  SL(n> q) if \G\ is
divisible by a prime which is a primitive divisor of qm — 1
for a suitable m ^ n — 2.

Wagner's results are in [10]. Higman's result, and the case n —
2α + 1 and q odd, are mentioned by Dembowski [1], p. 39. The result
mentioned above in (2) is an easy consequence of results of Wagner.
The idea used in (3) is due to Perin [8] and, independently, to G.
Hare and E. Shult.

I am indebted to G. Seitz for several helpful remarks.

2* Notation and preliminaries* As already mentioned, we will
be dealing with linear groups. Let V be an ^-dimensional vector
space over GF(q). We write GL{V) - GL(n, q) and SL(V) = SL(n, q).
It will be convenient to regard everything as taking place in the
relative holomorphic V GL(V). For any subgroups K, L of this semi-
direct product we can then consider the normalizer NL{K) and central-
izer CL(K). If L ̂  GL(V) and W is an L-invariant subspace of V,
we write Lw — L/CL(W) for the subgroup of GL(W) induced by L.
CL(V/W) and Lv]w are defined similarly. For any group G, as usual
Gf is its commutator subgroup, Z{G) its center, and Φ(G) its Frattini
subgroup.
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120 W. M. KANTOR

A group A is said to be involved in a group B if A ^ C/D with
B ^ C > D.

(2.1) If JB ̂  G L ( F ) has prime power order and (\R\, q) = 1, then

F = CV(R) 0 [ F , Λ], where [V, R] = (v - vr\v e V, r e R} is NGMV)(R)-

invariant.

Proo/. [3], p. 177.

(2.2) Let R ^ GL(F) have prime power order with (\R\, q) = l
Let IF be an iϋ-invariant subspace. Then dim CV(R) = dim CW{R) +
dim CF/Tί (i?).

Proo/. [3], p. 187, or (2.1).

Both (2.1) and (2.2) will be used frequently, generally without
reference.

A primitive divisor of qk — 1 is a prime r satisfying r\qk — 1 but
r \ qι — 1 for 1 ^ i < k; clearly ft \ r — 1.

(2.3) (i) If q is a prime power and ft ^ 2, then gfc — 1 has a primi-
tive divisor unless k = 6, q — 2, or ft = 2 and q is a Mersenne prime.

(ii) Let r be a primitive divisor of ĝ  — 1, and let R be an r-
subgroup of GL(V) for a GF(g)-space F. If CV(R) = 0, then ft divides
dim F.

Proo/. (i) [12].
(ii) This is clear if \R\ ^ r. Let |i2| > r, and let R, ^ Z(i2)

have order r. Then F = P F 0 [ F , i?J, where W= Cv(Rι) is i?-invariant
and CW(R) = 0. By induction, ft divides dim W and dim [F, i?J.

(2.4) Suppose dim F = ocm, r is a primitive divisor of #m — 1, and
R ^ GL(F) is an r-group such that CV{R) = 0. Then:

(i) Each noncyclic composition factor of N = NGMV)(R) is involved
in PSL(a, qm); and

(ii) If R is abelian, each noncyclic composition factor of N/Cy(R)
is involved in the symmetric group Sa.

Proof. Write F = Wλ φ © T^, with each Wi a sum of .#-
isomorphic irreducible i2-spaces and no two W4 having isomorphic
irreducible i2-subspaces. Set R{ = CR(W%). Then Z{RjR^) is cyclic
and nontrivial; let Z{ be its subgroup of order r. By (2.3 ii), dim W{ —
mβi for some e{. Consequently, β ^ a and β̂  ̂  a.

N permutes the W{. Let K be the kernel of this permutation
representation. Then N/K is involved in Sβ g Sa, and hence in
GL(a, q»).
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Set Ki = NGL{Wi)(Zi). Then K is contained in Kγ x x Kβ.
Moreover, K{ is contained in ΓL(eiy qm). This proves (i).

Now assume that R is abelian. Then R/R{ is a cyclic group
normalized by K. Since Π Ri — 1, it follows that K/CK(R) is abelian.
Since JV/-BΓ is involved in Sα this proves (ii).

(2.5) Let q be odd, and let H ̂  GL(V). Suppose that H\> A Φ 1,
where A is an elementary abelian 2-group. Set

m = min{\H:NH(B)\\B< A, \A:B\ = 2} .

Then m ^ dim F

Proof. (G. Seitz.) Let V be an ϋf-irreducible section of V on
which A acts nontrivially. Let H and A be the groups induced by
H and A. Then A Φ 1, and the corresponding in ̂  m. We may
thus assume that F = F is ZZ-irreducible. By Clifford's Theorem
([3], p. 70), F = Fi 0 0 Vt with the Vi direct sums of A-isomor-
phic irreducible A-spaces, no two Vi having a common irreducible con-
stituent. Here A induces a group of order 2 on each Vi9 while H is
transitive on {Vl9 •••, FJ. Thus, {C^(Fi)|ΐ = 1, , t) is an orbit of
H of subgroups of A of index 2. Consequently, t ^ m, so dim F Ξ> m.

(2.6) Let L be a finite group and i ί <] L with L/^ simple.
Suppose L has no proper subgroup Lo for which Lo/I/O Π K ^ L/iΓ.
Then:

(i) K is nilpotent; and
(ii) Each proper normal subgroup of L is contained in K.

Proof, (i) Let S be a Sylow subgroup of if. By the Frattini
argument, L = KNL(S), so our conditions on L imply that L = NL(S).

(ii) Let M ^ L and ΛΓ ̂  if. Since 1 Φ MK/K^L/K, MK = Z,
and hence M — L.

(2.7) Let d > e ̂  2 and t ^ 1. Then PSL(d, g) is not involved
in PSL(e, ql).

Proof. If p is the prime dividing g, then p-Sylow subgroups of
PSL(d, q) and PSL(e, qι) have nilpotence class ri! — 1 and e — 1, re-
spectively.

We now come to our main technical lemma.

(2.8) Let q — pe, where p is a prime, and m — dim F. Suppose
either m = 3, 4, or 5, or m = 6 and p = 2. Let L^GL(V) and H,K<\L,
where J ϊ ^ JSΓ, L/K^PSL(3, q), and L/H^PSL(3, q) or SL(3, g). Assume
that L has no proper subgroup Lo for which Lo/Lo Π K ^ PSL(Z, q).
Finally, assume: (#) If 1 ̂  fe e H and p 11 h |, then dim CF(fe) <S m — 3.
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Then there are L-invariant subspaces X, Y with X> Y such that
the following hold.

(a) K= Px C with P a p-group, \C\ = (3, q - 1), and H = P
or if.

(b) L/P™SL(3,q).
(c) P F ' X , P x / F and P F are all 1.
(d) άimX/Y= 3 and LxlY = SL(X/Y).
(e) If m ^ 5 and q Φ 2, then LF/X and LF are 1. Moreover,

some element g of order p in the center of a p-Sylow subgroup of L
satisfies dim Cv(g) ^ ra — 2, and even dim CF(#) = ra — 1 if P = 1.

Proof. Everything is obvious if ra = 3, so assume m > 3. We
will proceed by a series of steps.

(i) Clearly L = I/. We can apply (2.6) to L. In particular, if
is nilpotent.

(ii) Suppose that there are L-invariant subspaces Vlf V2 with
V1 Ξ> F2 and dim VJV2 ^ 2. We claim that L centralizes VJV2. For,
CL(VJV2) <J L, and since LFl/F2 does not have PSL(3, g) as a homomor-
phic image, (2.6) implies that CL{VJV2) — L.

(iii) Next, suppose that there are L-invariant subspaces X, Y
with X > Y9 dim X/Y = 3 and LXIY Φ 1. We claim that (a)—(e) hold.

Arguing as in (ii) we find that Lx]γ = SL(X/Y), while Lvfx and
Lr are both 1 or SL(3, q). Write K = P x C with P a p-group and
C a p'-group. C induces a group of order 1 or (3, q — 1) on F/X, X/F,
and Y. By (2.2), (a) holds unless \C\ = 9 and m = 6. However, in
this case C ^ Z(L), so L/P = (L/P)' is a central extension of SL(3, g)
by a group of order 9, and this is impossible [2].

Thus, (a), (b), (c), and (d) hold.
Now let ra ^ 5. Then dim V/X and dim Y are ^ 2, so Ί7ιx and

LF are 1 by (ii). If P ^ 1 then, by (c), each g Φ 1 in P satisfies
dim CF(#) ̂  ra — 2.

Suppose P = 1, so L w SL(3, g). By results of Higman [4], §5,
if q Φ 2 then there is an L-invariant 3-space Γ, and each element of
L inducing a transvection on T is a transvection of F. This proves
(e).

(iv) From now on we assume that ra and L are chosen with ra
minimal such that (2.8) is false. Then ra > 3.

L is irreducible on V. For otherwise, there is an L-invariant
subspace W with V> W> 0.

Then Lw Φ 1 and LF/ίF Φ 1. For suppose, say, that Uιw = 1.
Consider ZΛ, ί^, and Hw. By (2.2), (#) is inherited by ZΛ. Also,
if Lo ^ £ and L^/LΓ Π iΓ^ ^ PSL(3, q) then Loif/iί ^ Lo/Lo Π K has
PSL(3, q) as a homomorphic image, so that L0K = L and hence Lo = L.
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Consequently, Lw satisfies the hypotheses of (2.8). Then we can find
subspaces X and Y of W such that (iii) applies, whereas (2.8) is
assumed false. Thus, Lw Φ 1 and ISIW Φ 1.

By (ii) we must have m = 6 and dim W = 3. Then (iii) again
applies, and this is again impossible.

(v) By (iv) and the nilpotence of K, {\K\, q) = 1.
K is not central in L. For suppose K ^ Z(L). Since L = L', L

is a homomorphic image of the covering group of PSL(3, g). Then
L is PSL(3, g) or SL(3, g) (see, e.g., [2]).

On the other hand, L has an irreducible GF(q)-representation of
degree ra, where 4 ^ m ^ 6 and g is even if m = 6. No such repre-
sentation exists by [7] and [9].

(vi) Let r be a prime and R1 an r-Sylow subgroup of K such
that R, S Z{L). Set R= R^H. Then R S Z(L) and R <\ L.

Let A be a characteristic elementary abelian subgroup of 12. By

We claim that A ^ ^(L). For otherwise, L has a nontrivial
&F(r)-representation of degree ^ m - 3 ^ 3. By (2.6 ii), PSL(3, q)
is involved in GL(3, r). Thus, g = 2 and r ^ 3. Since A is a non-
cyclic elementary abelian subgroup of GL(6, 2), | A| = 72. Then L acts
transitively on A — {1}. However, not all elements of A — {1} are
conjugate in GL(6.2).

Thus, A ^ ^(L). In (iv), \A\ = r. In particular, Z(R) is cyclic.
(vii) Suppose rJfq — 1. By (vi), ϋί ^ GL(6, g) is nonabelian, so

r = 3|g + 1 and m = 6. Moreover, i2[> 5 with |JB: JS| = 3 and B
abelian. By (vi) we can find B, Φ B with R > J5X, 112: ̂  | = 3, and 5X

abelian. Then ΰ n 5 ^ Z(12) and |R/Z(R)\ ^ 9. Consequently, L
centralizes Z(R), R/Z(R)9 and hence also R, which is not the case.

Thus,r|g-1. In (iv), A^Lf]Z(GL(V))^Z(SL(V)), sor\(q-l, m).
There are now just three possibilities: m — 4, r = 2; m = 5, r = 5;

and m = 6, r — 3.
(viii) Let m = 4, r = 2. By (vii), — 1 € 12. There is an involution

ί ^ - 1 in 12. Either dim CΓ(ί) ̂  2 or dim Cv(-t) ^ 2. This contradicts (#).
(ix) Let m = 5, r = 5. A 5-Sylow subgroup of GL(5, g) has a

normal abelian subgroup of index 5 (the "diagonal subgroup"). Thus,
we can find B<*R with B abelian and 112: B | = 1 or 5. By (vi), 112: B \ is
5 and B is not characteristic in 12. Let Bx <R, BtΦ B, satisfy the same
conditions as B. Then B^B^ Z(R) and \R: Z(R)\ ^ 52. By (vi),
J£(12) is cyclic, so L centralizes ϋΓ(12), R/Z(R), and hence also 12, which
is not the case.

(x) Finally, let m = 6, r = 3, and q = 2\ Here 3|g - 1. On
the one hand, L/CL(R/Φ(R)) can be regarded as a subgroup of GL(e, 3)
for some e; on the other hand, using (2.6) and (\K\9q) = l, we
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find that this group has an elementary abelian 2-subgroup of order
q2 whose normalizer is transitive on the nontrivial elements. By (2.5),
e ^ q2 — 1. However, a 3-Sylow subgroup of SL(6, q) has order
^ 3(g - I)6. Thus, 392-1 S 3e £ \R\ < 3q\ and since q ^ 4 this is
ridiculous.

This contradiction completes the proof of (2.8).

3. Wagner's results and some corollaries* Let V be ^-dimen-
sional over GF{q), n ^ 3, and let G <£ GL(V) be 2-transitive on 1-spaces.

(3.1) For each 3-space T, NG{T)T ^ SL(T).

Proof. Wagner [10], p. 417.

(3.2) If n ^ 5 then G ^ SL(V), unless n = 4, g = 2, and G ̂  A7.

Poo/. Wagner [10], p.422.

(3.3) For each w-1-space W, NG{W) is 2-transitive on the 1-spaces
of V not in W.

Proof. [6], p. 6.

(3.4) If G has an element g Φ 1 such that dim Cv(g) ^ n — 2,
then G ;> SL(F) or π = 4, g = 2, and G ^ AΊ.

Proof. We may assume that \g\ is prime and n > 5. Since
dim [F, #] ^ 2 and # centralizes F/[F, g], there is a 3-space T > [V, g]
such that gτ Φ 1. Then 1 Φ CG(V/T)T < JVff(Γ)Γ. By (3.1), CG(F/2y ^
SL(Γ). Choose g' e CG(V/T) with | g'\\q + l and dim Cr(^r) = 1. Then
dim Cv{g') = n - 2.

We may thus assume that (\g\9q) = l. Since gLV>g]Φl, as before
CG(F/T)Γ ^ SL(T) for each 3-space Γ > [V, g]. By the 2-transitivity
of G, this holds for every 3-space of V.

Choose m ^ n maximal with repect to CG(V/U)U ^ SL(U) for all
m-spaces U. Suppose m < n. By Wagner [10], p. 420, m ^ n — 2.
Take any subspace TF of dimension m + 1 or m + 2. For each m-space
27 < W, CG(V/U) fixes IF and centralizes F/TF, while CG(V/U)U ^
SL(U). By Wagner [10], p. 420, and (3.2), CG(V/W)W ^ SL(W) for
each m + 1-space IF. This contradicts the maximality of m.

(3.5) Let s be a prime and S an s-group maximal with respect to
dim CV(S) ̂  3. Then NG(S) is 2-transitive on the 1-spaces of CV(S).

Proof. Take any 3-space T £ CV(S). Then S is Sylow in CG(T).
By the Frattini argument and (3.1), (NG(S) Π NG(T))T = NG(T)T ^
SL(T). Our assertion follows immediately.
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4* The case n = τa + 1. There is one very easy case of our
problem.

(4.1) THEOREM. Let r be a prime divisor of q — 1, and let a ^> 1.
Then every collineation group of PG(ra, q) which is 2-transitive on
points contains PSL(ra + 1, q).

We first prove:

(4.2) Let r be a prime divisor of q — 1, and let a ^ 1. Let V
be an ̂ -dimensional vector space over GF(q). If G ^ ΓL{V) is transi-
tive on V - {0}, then r 11G Π

Proof. Let r^ be the largest power of r dividing qd — 1, where
d — r«# Then g is not an r^th power, so r\\G Π GL(F) | .

Let iϋ be an r-Sylow subgroup of G. By [11], p. 6, each orbit
of R on V — {0} has length divisible by rβ.

R fixes no nontrivial proper subspace of V. For, if it did we
would have rβ \ qm - 1 with 1 ̂  m < d. Set e = (d, m). Then r̂ 31 ge — 1.
However, as d/β is a power of r,(qd — ϊ)/(qe — 1) is divisible by r, and
this contradicts the definition of rβ.

Let xe Z(R) Π GL(V) have order r. Since r\q — 1, α? can be
diagonalized. By the preceding paragraph, x is a scalar transforma-
tion, that is, xeZ(GL(V)).

(4.3) Let r be a prime divisor of q — 1, and let a >̂ 1. Then a
collineation group of the affine space AG(ra, q) which is 2-transitive
on points contains the translation group.

Proof. (4.2).

Now (4.1) follows immediately from (3.3) and (4.3).

5. Primes dividing \G\. We will consider the following situa-
tion in the remainder of this paper.

Let V be an n-dimensional GF{q)space, n ^ 6, and G be a sub-
group of GL(V), 2-transitive on lspaces, such that G g SL(V). We
may clearly assume that G > Z — Z(GL(V)).

In this section let s be a prime dividing (|G|, qm — 1), 1 < m ^
n — 2, such that s is a primitive divisor of qm — 1. (5.1) is essentially
due to Perin [8] and, independently, to E. Shult and G. Hare.

(5.1) If m = n — 2 then q — 2 and n is even.

(5.2) Suppose that n = <̂ m + /3, # < / 3 ^ r a + 2, and an element
of order s centralizes some 3-space X. Then, for some nf satisfying
5 < n' < n and nr ~ n (mod m), there is a subgroup of GL(n', q), not
containing SL(nr, q), which is 2-transitive on the points of PG(n' — l, q).
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Clearly (5.2) has an inductive flavor. Since the proofs are similar,
we will only prove the second of the above results.

Proof of (5.2). Choose S ^ CG(X) as in (3.5). Set W = CV(S),
TΓ* = [V, S], and N = NG(S). Then V = W@ TF*, CW*{S) = 0, and
Nw is 2-transitive on 1-spaces.

Set n' — dim W, so n' ^ 3. By (2.3 ii), since β ^ m + 2 we have
dim W* = 7m with Ί^a. Then ^ = t i - τ m ^ ^ ~ am = β>a^y.

We must show that nf > 5 and ΛT ^ SL( W). Deny this. Then
either Nw ^ SL(ΐF) or nf = 4, g = 2, and JST ^ A7. In particular,
the commutator subgroup N'w contains a nontrivial element central-
izing an ^'-2-space.

In this situation, CN,(W*)W ^ Z(GL(W)). For otherwise,
CN,(W*)W^N'W implies that CN,{W*)W = N'w. Then CAW*) has
a nontrivial element g centralizing an %'-2-spaee of W. Hence,
dim Cv{g) ^ n — 2, which contradicts (3.4).

It follows that JV'̂ * has PSL(n', q) as a homomorphic image, unless
n' = 4 and g = 2, in which case A7 may be a homomorphic image.

Since CW*(S) = 0, we can apply (2.4): each noncyclic composition
factor of Nw* is involved in PSL(Ύ, qm). Since w'>7, by (2.7) PSL{n\ q)
cannot be such a composition factor. Thus, n' = 4, g = 2, 7 ^ 3, and
A7 is a composition factor of NfW*. However, A7 is not involved in
PSL(Z, 2W). This is a contradiction.

REMARK. It is useful to note that the above proof holds under
slightly weaker hypotheses: s is a primitive divisor of qm — 1, S Φ 1
is an s-subgroup of G with W — CV(S) of dimension n' ^ 3, (w — ̂ ')/m <
n', and NG(S)W is 2-transitive on 1-spaces.

We conclude this section with two miscellaneous results.

(5.3) Assume that G has a cyclic subgroup H of order qn — 1
containing an r-Sylow subgroup of G for some prime r dividing
g2 + g + 1. Then g = 2 and % is even.

Proof. Suppose g Φ 2 or g = 2 and w is odd. By (2.3), H is
transitive on F - {0}. Thus, H is transitive on the 3-spaces fixed by
its subgroup R of order r.

On the other hand, by (3.1) each 3-space is fixed by a conjugate
of R. Thus, G is transitive on 3-spaces, and this contradicts Perin
[8] or (5.1) since n ;> 6.

(5.4) Assume that G has a cyclic subgroup of order g"""1 — 1
fixing some n — 1-space W and transitive on W — {0}. Then NG{W)
is 2-transitive on the 1-spaees of W, q = 2, and % is even.
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Proof. We may assume that G — Z has no element fixing all
1- spaces in W. By [6], Lemma 7 3, NQ{W) is 2-transitive on the
1-spaces of W. The result now follows from (2.3) and (5.1)

6* The case n ^ 9* Let n, F, G, and Z be as in §5, so G ^
SL(V). Let p be the prime dividing q.

Assume that 6 ̂  n ^ 9.

(6.1) n Φ 6.

Proof. Suppose n = 6. If g = 2 then g5 — 1 is a prime. By
(5.4), the stabilizer of a 5-space T7 is 2-transitive on W — {0}. By
(3.2) and (3.4), G ^ SL(F), which is not the case.

Thus, q > 2. Let r be a prime dividing g — 1.
Suppose that there is 3-space T for which NG(T) — Z contains an

element inducing a scalar transformation of order r on T. Using Z,
we find that r\\CG(T)\. Let R be an r-Sylow subgroup of CG{T).
By (3.4), T=CV(R). By (3.5), NG(R)T^SL(T). Also, NG(R) normalizes
the 3-space [F, R]. An element of order p in the center of a p-
Sylow subgroup of NG(R) centralizes 2-spaces of both CV(R) and [F, 22],
and hence centralizes a 4-space of F=CV(i?)φ[F, i?]. This contradicts
(3.4). Thus, no element of G — Z of order r has an eigenspace of
dimension > 2.

Now take any 3-space T, and write Γ = I φ 7 with dim X = 2
and dim Γ = 1. Set F = ΛΓG(X) n A^(F), so Fx = GL(X). Take
R^F oί order r with i2 ̂  Z and J?Γ ̂  ^(ί771)- By the Frattini argu-
ment, NF{R)X = GL(X). Let £7 <; iVj.(iί) be minimal with respect to
Ex = SL(X).

Since i? is diagonalizable and each of its eigenspaces has dimen-
sion 1 or 2, we can write F = 1 0 W1 0 W2 with ^ > Γ, dim W< =
2, and T^ invariant under NG(R). If qφZyE — E* centralizes TF1?

so an element of E of order p centralizes a 4-space, which contradicts
(3.4). If q = 3, i? cannot have more than two eigenspaces as |U| =
2, which is again a contradiction.

(6.2) g is even.

Proof. Assume that g is odd. There is an involution teG — Z.
Since n ^ 6, dim CF(ί) or dim Cv(—t) is ^ 3. Let S be a 2-group in
G maximal with respect to dim CV(S) ^ 3. Set W = CV(S) and W* =
[F, S], so V= W®W*. Set AT = iVc(S). By (3.5), ikT is 2-transi-
tive on 1-spaces Since M> Z and all involutions in Mw centralize
at most a 2-space (by the maximality of S), dim W ̂  4. Consequently,
by (3.2), Mw ^SL(W).

By (4.1) and (6.1), n - 7 or 8, so dim TF* ̂  5.
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We claim that CM{W*)W ^ Z(GL(W)). For otherwise, C
Mw yields CM(W*)W ^ SL(W): Then CM(W*) contains a nontrivial
transvection of V, which contradicts (3.4).

Thus, CM{W*) is cyclic and M'w* has PSL(W) as a homomorphic
image.

Suppose that dim W = 4. Then dim W* = 3 or 4. Use of M'w*
yields dim W* = 4 and Af'TF* ^ SL(W*). If # Φ 1 is in the center of
a p-Sylow subgroup of Mf then #TΓ and gw* are trans vections, and this
contradicts (3.4).

Thus, dim W = 3. Let L ^ ikf be minimal with respect to having
PSL(3,q) as a homomorphic image. Let H= CL(W) ^ K <] L with
L/KF*PSL(S, q). Then (2.8) applies to W*, Lw\ Kw\ and i F * .

Choose geL so that gTF* is as in (2.8 e). If geH= CL(W), then
dim CF(#) ̂ n — 2. If £ P * = 1 then i ί = 1, and both #τf and gw* are
trans vections, so once again dim Cv(g) ^ n — 2. In either case we have
contradicted (3.4).

(6.3) n Φ 7, 8.

Proof. Let w = 7 or 8. Fix a prime r\q + 1.
Take any 3-space T. By (3.1), JV^Γ)71 ^ SL(Γ). Also, iVσ(Γ)

acts on V/T. By (3.4), C^F/Γ)7 1 < Z(GL(T)) (since otherwise, Cβ(V/T)
would have an element of order r), so CG(V/T) is solvable. Thus,
NG(T)VIT has PSL(3, q) as a composition factor. By (2.8), there is
an r-group R Φ 1 in NG{T) such that dim Cvlτ(R) ^ 2, and then
dim CV{R) ̂  3.

This contradicts (5.2) with ^ = 2-2 + 3 or 2-2 + 4.

(6.4) If n = 9 then g = 2 or 4.

Proof. Suppose n — 9 and g > 4 is even.
( i ) By (5.2) with n = 2 3 + 3, no nontrivial element of order

dividing (q2 + q + l)/(# + 1, 3) can centralize a 1-space.
(ii) Let T be any 3-space. Let L ^ NG(T) be minimal with

respect to having PSL(3, g) as a homomorphic image. By (3.4),
CG(V/T)T^Z(GL(T)), so (2.8) applies to Lv/T. Consequently, by (i)
there is a 6-space Y> T such that LYIT = SL(Y/T) and LF / F = SL(F/Γ).

(iii) Let s be a prime dividing q + 1. By (ii), there is an element
of order s centralizing a 3-space.

Let S be an s-group maximal with respect to dim CV(S) ̂ 3 . By
(3.5), NG(S) is 2-transitive on the 1-spaces of CV(S). In view of (i),
it follows from (3.2), (6.1), and (6.3) that dim CV(S) =- 3.

Let T= CV(S) in (ii), and choose L ^ NG(S) there. By (i) and
the proof of (2.4), (LS)ίV>S] acts as a subgroup of ΓL(S, q2), with S
inducing scalar transformations.



ON 2-TRANSITIVE COLLINEATION GROUPS 129

(iv) Since q > 4, by (2.3 i) there is a prime r Φ 3 dividing q — 1.
Moreover, if # ̂  16 we can choose r Φ 5.

We claim that some element of order r centralizes a 4-space. For,
since r ΦZ, in (iii) we can find geL — Z of order r such that # [ F ' 5 ]

has an eigenspace of dimension ^ 4 Consequently, some element of
(g, Z) of order r centralizes a 4-space.

(v) Let i? be an r-group maximal with respect to dim CV(R) ^ 3;
by (iv), RΦI. Set T - CV{R) and T* = [F,ΛJ. By (3.5), NG(R)T

is 2-transitive on 1-spaces, so dim T = 3 by (i). We can thus choose
£ ^ NG(R) in (ii).

We claim that LR centralizes R and that R is diagonalizable.
Certainly (LR)T* ^ GL(T*). Suppose r > 5. Then an r-Sylow sub-
group of (?L(6, q) is diagonalizable, and hence abelian. By (2.4 ii)
(with m = 1, a — 6), each composition factor of L/CL(R) is involved
in S6. By (2.6 ii), L - CL(JB), so R ^ Z(LJK).

Consider the case r = 5, q = 16. Suppose L > CL(R). Then L
acts nontrivially on R/Φ(R), where |i2/Φ(i?)| ^ 57. By (2.6 ii), 16 + 1
divides |GL(7, 5)|, which is not the case.

Thus, L centralizes R. There is an s-group So < L such that
dim CΓ*(S0) = 2. Since R normalizes CT*(SQ) and [T*,S0], it follows
that R is again diagonalizable. Thus, R ^ Z{LR).

(vi) T* is the direct sum of J?-invariant subspaces, each invariant
under LR. By (ii) and (v), there are 3-spaces X and X' such that
T* = I φ Γ , Rx and jβx' consist of scalar transformations, Lx =
SL(X')> and L γ / = SL(X').

Consequently, for each heR, dim Cv(h) = 3, 6, or 9.
(vii) By (iv), there is an r-group R1Φ 1 maximal with respect

to dim CviRd ^ 4. By (vi), W = CγiR,) has dimension 6. Set M =

Take any 3-space T < W. Let R^ R^ be an r-Sylow subgroup
of Cσ(Γ). If J? = i?x then NM{T)T ^ SL(Γ) by the Frattini argument.
If R> R, then the choice of j?! implies that CV(R) = Γ, and hence
that i? is an r-group maximal with respect to dim CV(R) Ξ> 3; by (v),
CG(R)T ^ SL(T), so again NM(T)T ^ SL(Γ).

Consequently, Mw is 2-transitive on 1-spaces. Then (g6 — ΐ)/(q — 1)
divides |G|, and this contradicts (5.2).

(6.5) If n = 9 then ? ^ 4.

Proof. Suppose ^ = 9 and q = 4. We will try to imitate the
proof of (6.4) using r = 3. Steps (i) and (ii) of that proof still hold.

We begin by showing the existence of x e G of order 3 such that

χy = χ~ι for some 2-element y. Take T and L as in (ii). Then we
can find x,yeL with \x\ = 3, # a 2-element, and $tf = αĵ α, αG CL(T).
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By (2.8), CL(T) = P x C with P a 2-group and \C\ = 1 or 3. Then
(x) is Sylow in (x, y}P. By the Frattini argument, some element of
(y}P inverts <a?>, and we may assume this is y.

We next claim that some element of order 3 centralizes a 4-space.
For, assume that this is false, and choose x, y as above. Since q =
4, x is diagonalizable and has at most 3 eigenspaces. However, no
element of (x, Z) — {1} centralizes a 4-space, so Cv(x) — T is a 3-space
and x has two other 3-dimensional eigenspaces Tiy T2. Moreover, by
our assumption, Cβ(T) has a cyclic 3-Sylow subgroup. Thus, by the
Frattini argument, NG((x})τ ^ SL(T), so CG(x)τ ^ SL(T). Since
\GL(T):SL(T)\ = 3, y^eSL(T), so we can find ceCG(X) such that
c^yeCoiT). Clearly c~ιy inverts x, so there is an involution te
(c^y}. Here, t centralizes T and centralizes 2-spaces of each Ti9 so
dim Cv(t) Ξ> 7. This contradicts (3.4), and proves our claim.

Now define R, Ty T*, and L as in (v). We will be able to obtain
a contradiction precisely as in (vi) and (vii) if we can show that R ^
Z{LR) and R is diagonalizable.

By (2.6), L> K with L/K^PSL(3, 4) and K nilpotent. By (2.2)
and (2.8), K — P x C with \C\ = 3 or 9 and P a 2-group; moreover,
there is an L-invariant 3-spaee X< T* such that Lx = SX(X), LJ*/X =
SL(T*/X), and P centralizes Γ, X, and Γ*/X By (3.4), no nontrivial
element of P centralizes a 4-space of ϊ7*. Consequently, P is elemen-
tary abelian of order ^ 43. Thus, if P ^ Z(L) then PSL(3, 4) is iso-
morphic to a subgroup of GL(6, 2), which is not the case ([7], [9]).
Thus, K ^ Z(L).

Now suppose that L acts nontrivially on R, and hence on R/Φ(R).
Since 22 ̂  GL(6, 4), |22/Φ(2Q | ^ 36 32. Thus, PSL(3, 4) or SL(3, 4) is
isomorphic to a subgroup of GL(8, 3). Then GL(8, 3) has an ele-
mentary abelian subgroup of order 42 whose normalizer is transitive
on the nontrivial elements. By (2.5), this is impossible.

Consequently, L ^ CG(R). An element of L of order 5 centralizes
1-spaces of X and T*/X. It follows that T* is the sum of i2-invariant
2-spaces. Thus, R is diagonalizable and R ^ Z(LR). This completes
the proof of (6.5).

Last, and least:

(6.6) If n = 9 then q Φ 2.

Proof. Suppose n = 9 and q — 2. Using (5.1) and (5.2) we find
that IGI = 2α 3̂  5 7 17 73 for some tf, /S.

Let S be a 73-Sylow subgroup of G. By (5.3), | CG(S) \ = 73. Thus,
|JVσ(S)| - 3^-73 with 7 ^ 2 .

By Sylow's theorem, 2a 3^ r 5 7 17 = 1 (mod 73). A little arith-
metic shows that this is impossible.
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In view of (3.2) and the results of this section, we can now state:

THEOREM 6.7. Let H be a subgroup of PΓL(n, q) which is 2-
transitive on the points of PG(n — 1, q). If 3 ^ n ^ 9, then H ^
PSL(n, q) or n = 4, q = 2, and H & A7.
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