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Let Y be a Banach space with norm | |, and let R+ be
the interval [0, oo). Let A be a function on R+ having the
properties that if t is in R+ then A(t) is a function from Y
to Y and that the function from R+ X Y to Y described by
it, x) -» A(£)M is continuous. Suppose there is a continuous
real-valued function a on R+ such that if t is in R+ then
A(t) — cx(t)I is dissipative. Now it is known that if z is in
Y, the differential equation u'(t) = A(t)[u(t)]; u(θ) = z has
exactly one solution on R+. It is shown in this paper that if
t is in R+ then u(t) = 0IP exp [(ds)A(s)] [z] = 0 I P [ I - (ώ) AC*)]-1^],
where the exponentials are defined by the solutions of the
associated family of autonomous equations.

The dissipitavity condition on A is simply that if (t, x, y) is in
R+ x Y x Y and c is a positive number then

(1) \[I-cA(t)M - II ~ cA(t)][y]\ ^ [1 - ca(t)]\x - y\ .

The author and R. H. Martin, Jr. [5] have shown that if (1) holds,
and z is in Y, then there is exactly one continuously differentiable
function u from R+ to Y such that

(2)

and

(3) u'(

whenever t is in (0,- ©o). In the present article we shall show that
u can be expressed as a product integral in each of two forms:

(4) u(t) = t

and

(5) u(t) = ή
0

Our work is related to results of J. V. Herod [2, §6] and G. F.
Webb [7], [8]. Herod showed that representation (5) is valid if the
mapping (t, x)-+A(t)[x] is bounded on bounded subsets of R+ x Y.
Webb obtained in [7] a representation similar to (4) under a set of
hypotheses different from, and independent of, those used here. In
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[8], Webb showed that (5) is valid if A is independent of t. (Actually
Webb in [8] restricted his attention to the case a = 0, but his proofs
adapt easily to the general time-independent case.)

II* Product integrals. We shall assume throughout that A and
a are as in our introduction, and that (1) is true whenever (t, x, y)
is in R+ x Y x Y and c is a positive number. Now it follows from
either of [5] and [6] that if (t, x) is in R+ x Y then there is exactly
one solution v of the problem

(6) v'(s) = A(t)[v(s)]; v(0) = x .

Furthermore, this problem generates an operator semigroup, which
we shall denote {exp [sA(t)\: s is in R+}, i.e., if s is in R+ then
exp [sA(έ)] is a function from Y to Y such that if x is in Y then
exp [sA(£)][#] = v(s), where v solves (6).

It is clear from (1) that there is no loss in assuming a to be
iϋ+-valued, and we shall. It follows from [6] that if (c, t) is in
R+ x R+ and ca(t) < 1 then I — cA(t) is a bisection on Y, and

I [ I - cA(t)Γ[x] -[I- cA{t)Γ[y] | ^ [1 - ca{t)Γ I x - VI

whenever (#, ?/) is in Γ x Y. If {J5X, * ,J?n} is a set of functions
from Γ to Γ, and x is in Γ, then ΠJ=1 -BJN = ^ a n d Πi=i - îl̂ ] =
-B/b[Πi=ί B3[x]] whenever k is an integer in [l,ri\. If (t,x,y) is in
β + x Γ x 7 then the statement

V=U[I- (ds)A(s)]'1[x]
0

means that if ε is a positive number then there is a chain {ry}JL0 from 0
to £ such that if {sk}l=0 is a refinement of {r3)f^, and {sA}2=1 is a
[0, ί]-valued sequence such that if k is an integer in [1, n] then sk

is in [$£_!, sk], then

—~ l χ 1-̂  \*^ k ^k 1/ ^^v fc/i L J *^

The statement

y = Π exp [(<fe)A(8)][aj]
0

is defined analogously.

THEOREM. Let z be in Y, and let u solve (2) and (3). Then
each of (4) and (5) is true whenever t is in R+.
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Let m_ be that function from Y x Y to the real numbers given
by

« U » , y] = Km (l/δ)(\x + δy\ - \x\) .

Now (1) is equivalent to requiring that

m_[x - y9 A(t)[x] - A(t)[y]] £a(t)\x-y\

whenever (t9 x9 y) is in R+ x Y x Y (compare [1, p. 3]) Also, if /
is a function from a subset of R+ to Y, if c is in the domain of /,
if f'-(c) (the left derivative of / at c) exists, and if P is given on
the domain of / by P(t) = |/(t) | , then PL(c) exists and PL(c) =
tfU/(c), f'-(c)] (compare [1, p. 3]). If (x, y, z) is in Y x Y x Y then
m_[ί», 2/ + z] ̂  m_[#, ?/] + \z\ (see [4, Lemma 6]). We are now pre-
pared to prove our theorem.

Proof of the theorem. Let & be a positive number, and let β be
a positive upper bound for the set {a(t): t is in [0, 6]}. Let ε be a
positive number, and let d be a positive number such that (δ/β)(eβb-~l)<ε.
Now {u(t): t is in [0, δ]} is a compact subset of Y, so the function
described by (t, x) -+ A(t)[x] is uniformly continuous on [0, b] x {u(t): t
is in [0, b]}. In particular, there is a positive number η such that
if (r, s, t) is in [0, 6] x [0, b] x [0, b] and | r - β| < η then | A(r)[w(t)] -
A(s)[u(t)] I < <5. Let {tk}l=0 be a chain from 0 to 6 such that tk — tk^1 < η
whenever k is an integer in [1, n]9 and let {tk}l=1 be a [0, δ]-valued
sequence such that if k is an integer in [1, n] then tk is in [tk_l9 tk\.
Let v be that function from [0, 6] to Y having the property that if
k is an integer in [1, n] and t is in [tk_l9 tk] then

v(t) = exp l(t - tk^)A{tk^)] Π exp [(tj - t^Afam*]

Clearly now v is continuous. Also, v is left differentiate on (0, &]:
if fc is an integer in [1, n] and t is in (tt_l9 tk] then

Let P be given on [0, b] by P{t) = |v(ί) - w(ί)|. Now P(0) = 0. Sup-
pose that t is in (0, b] and A is an integer in [1, n] and t is in
(ί*-i, **]• Now

PL{t) = m_[^(ί) - tt(ί), i l(t)

- mΛv(t) - u(ί), A(?^)b(ί)] - A(t)[u(t)]]
= m_[v(t) - u(t),
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+ I A ^ J [ « ( « ) ] - A(t)[u(t)]\

^ βP(t) + δ .

Hence [3, Theorem 1.4.1, p. 15],

P(t) ^

whenever t is in [0, 6]. In particular,

u(b) - Π exp [(tk - tt_

e .

Thus we have proved that representation (4) is valid.

Now let b and β be as before. Let c be a positive number such
that cβ < 1/2. Now if t is in [0, 6] and r is in [0, c] then

- v

whenever (x, y) is in 7 x Y.

Now let K — {u(t):t is in [0, δ]}, and recall that K is compact.
Let ε be a positive number. By the aforementioned uniform continuity,
there is a positive number ηί such that if (s, t, x, y) is in [0, b] x
[0, 6] x K x K and | s - ί | < ft and | & - y \ < ft then | A(s)[x] - A(£)[ί/] | <
(ε/b)e~2βh. Let ft be a positive number such that if (s, £) is in [0, 6] x
[0, b] and |s — ί| < ft then \u(s) — u{t) \ < ft. Let δ = min {ft, ft, c}.
Suppose that O ^ r ^ s ^ ί ^ δ and t — r < δ. Let {£*}£=<> be a chain
from r to ί, and let {ξk}t=ι be a [r, ί]-valued sequence such that if
k is an integer in [1, n] then | Λ is in [ξk^lf ξk]. Now

ύ Σ (£* - ik-d\A(ξk)[u(ξk)] - A(s)[u(t)]\
k=i

Σ = (ί -
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It is now clear that

A(ζ)Mmdζ - (ί - r)A(s)[u(t)]

^ (* - r)(ε/b)e~2?b .

Let {tk}t=Q be a chain from 0 to δ, and suppose that tk — tk^ < δ
whenever k is an integer in [1, n]. Let {tk}k=1 be a [0, δ]-valued
sequence such that if k is an integer in [1, n] then tk is in [tk_l9 tk\.
Now

Π U - (tj - tj^

\u(tk) - [ I - (ίt

I- (tk - tk^ - «(«»_,)I

\\'(S)dξ - (tk - tk

Σ I \"ίA(ξ)[u(ξ)]dζ - (tk
I

The proof of the theorem is complete.
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