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The concept of a martingale is generalized in two ways.
The first generalization is shown to be equivalent fo con-
vergence in probability under certain uniform integrability
restrictions. The second generalization yields a martingale
convergence theorem.

1. Introduction. In what follows {X,, ®8,} is a sequence of
integrable random variables and sub-sigma fields on the probability
space (2,3, P) such that

X, is B,-measurable
%n c %'n-l—l
B = o(D i’%) .

We call the sequence {X,,%8,} an adapted sequence. In [2] Blake
defines {X,, B,} as a game which becomes fairer with time provided

B(X,|B,) — X, —2>0 as n=m— oo,
i.e., provided, for all ¢ > 0:
lim P(|E(X,|8B,) — X,.|>¢ =0 as m—> .
n>m

It is proven in [1] that if {X,, B,} becomes fairer with time, and if

there exists Ze L, with |X,| < Z for all n, then X, —% X, some
Xe #.

In the present paper we will show that X, ——% X under the less
restrictive assumption that {X,} is uniformly integrable. We will
further show that in the presence of uniform integrability {X,, B,}
becomes fairer with time if and only if {X,} converges in probability,
i.e.,

B(X,|B,) — X, — 5 0& X, — X, —50.

Finally, by using the more restrictive concept that {X,,8B,} is a
martingale in the limit, namely,

lim (B(X,|%,) — X,) =0 a.e.,

n=m—oo

we will prove (Theorem (2)) a generalization of a standard martingale
convergence theorem.
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198 ANTHONY G. MUCCI

2. PROPOSITION 1. Let the sequence {X,} be uniformly integrable
and assume

limg X, ewists, all AecU, .
A 1

n—oo

Then there exists X € & such that

lim LX,, - SX all AcS.

n—rco

Proof. Let Ae®B, 6> 0. There exists 4, U B, with P(A44,) <
0. This, together with the augument in Neveu [3] (page 117) proves
the desired result.

REMARKS. Let 2 =[0,1) with Lebesgue measure. Let B, be
the o-field generated by the subintervals A4,,, = [k/2*, (E + 1)/2"), k =
0,1,+..,2* — 1. Set X, = 3% (—1*L,, , where I, is the indicator
function of A. Then for any Ae U B, we have lim%ws X, =0.

Further, {X,} is uniformly integrable. However, {X,} does ;101; con-
verge in the .&4-norm.

ProposiTION 2. Let {X,} be uniformly integrable and assume
{X.,} becomes fairer with time:

(*) lim P(|E(X,|SB,) — X,[>¢ =0.
Then there exists X € &<, such that X, =L X
Proof. Let AeSB,,p =9 = m. Then

| x-]x = || zaxis) - x,

< | | BX, 1) — X, + ¢
AU E(X I8 —Xgl>e)
§2supg 1 X:| + €.

kBT JAUEX B —X gl>e)

By uniform integrability and the assumption (*) we see that

lim S X, converges, all Aec Cl B, .
A 1

n—oo

By Proposition 1, there exists X e ¢ with

1im§ X,,:SX, all AcSB.
A4 A

fn—c0
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Note that {E(X|8,), B,} is a martingale and E(X|8,) — X both in
the &£ and the almost sure sense (Levy’s Theorem). Since

[1x - x1={Ix - BxIB)| + || BCXIB) - X1,
it will be enough to show §|Xn — F(X|%8,)|— 0. Now

[1x. - Bxim) = | (X, ~ B(X|%B.)

(X, ZE(X13,))

(B(X|B,) — X,) .

S(X,,<E(X|Qb,,))

Letting %' = » and setting A = (|E(X, |8,) — X.| > ¢), we have

X, - BX(8) = | 1%+ 1%,

S(XWEE(X]%»,,,))

(X, = X)| +¢

+ }S(X,,;E(X,,HB”))
=< 2sup | | X,|
k A
1 1l
+ 1| (X, — X)| +¢.
Mx,zEx8,) i

By uniform integrability and condition (*), the first integral is small.
Letting ' — o, the difference in the remaining integral tends to
zero. An identical analysis shows

(B(X|B,) — X,) — 0.

S(x,,<E(X|m)
REMARKS. SupposeX, —~%, X. Then since
Lix={x-x+{x,
A A
we see that {X,} is uniformly integrable. Further

P( B(X,|B,) — X >9 < L|| EX,|B) — Xa|
1
= 2|1x - X,

so {X,, B,} becomes fairer with time. It is shown (Neveu [3], page
52):

{X,} is Cauchy in the &4 norm & {X,} is uniformly integrable
and {X,} is Cauchy in probability.

We tie these results together with Proposition 2 to get
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THEOREM 1. Let {X,,B,} be an adapted sequence. Then the
following three statements are equivalent:

(a) There exists Xe & and X, —> X .
(b) {X.} is uniformly integradble and E(X,|8,) — Xm—P> 0.
(c) {X.,} is uniformly integrable and X, — X, L, 0.

COROLLARY 1. Let the adapted sequence {X,,B,} be uniformly
antegrable. Then

E(X,|8,) — X, 250X, — X, —250.

REMARKS. In the absence of uniform integrability we have neither
implication. Consider the following two examples:

(1) Set X, =>7y, where {y,} is a sequence of independent
identically distributed random variables with zero means. Set 8B, =
oY, Yoy +++, ¥s). Clearly {X,,8,} is a martingale, so E(X,|8,) —

X, —— 0. But, if, for instance

1 with probability %

ylo = . . 1 ’
—1 with probability 5

then

v

N—

P(X,— X,|=1) = (zyl 1

ey 1o — o,
(Zl / vVn—m

<
)

so X, — X, —i 0.
(2) Let {y.} independent where P(y, = k°) = 1/k* and P(y, = 0) =
1— 1/k%
Then, setting X, = >,*y, we have
| E(X[Bp) — Xp| = B >,y 2 1

while

P(X, - X|z9=P(Znze)=PU@wz9)

so in this case X, — X, —2,0 while E(X,|8,) — X,+~0.
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Recall now the definition that {X,,®B.} be a martingale in the
limit, namely:

** EX,|8B,) — X, — 0 almost everywhere.

THEOREM 2. Let the adapted sequence {X,,B,} be uniformly
integrable and a martingale in the limit. Then there exists X e &
such that

X, —— X almost everywhere and in the Z-norm.

Proof. Clearly, {X,, 8,} becomes fairer with time, so from Theorem

1 there exists Xe.&2 with X, =% X. Now, for an arbitrary sub-
sequence {n'},

le — X[ é IXm—E(Xn’I%m)I + [E(Xn’ —'X‘%m)l + IE(Xi%m) —'Xl .

By Levy’s theorem, the third term is less than &/8 for large enough
m. The first term is also bounded by ¢/3 for large m,n’ since
{X., ®B,} is a martingale in the limit. We must now show that the
second term is small. Note first that for an arbitrary o-field &7 we
have

E(X,|.) =% E(X|s7 .

Now start with the o-field B, and note that the convergence
=z

E(X,|%B) —l—»E(X |B,) implies the existence of subsequence {n,} C {n}

with E(X, |®B,) — E(X|®8,) almost everywhere. Continuing, we have

E(X,,|B) — E(X|B,), and we can extract {n;} C {n,} with E(X,,|B;)—
E(X|%B,) almost everywhere. Thus, there exists a subsequence {#} <
{n} with E(X;|8,) — E(X|8,) a.e. for all m, namely the diagonal
subsequence. Now choose {n'} as a subsequence of {#}, and we can
bound the second term above by &/3.

Applications. 1. Let {y,} be a sequence of independent random
variables such that

1im§ Sul=0.

Then 3.7y, exists a.e. and in the .¢5-norm.
Proof. Set S, = >"y,. Then

s ={jsal+]| S w

?
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so it is clear that {S,} is uniformly integrable. Further, setting
EB’” = U(yly y25 ty, yn)! we have
=

so {S,, B,} is a uniformly integrable martingale in the limit.

n

> Ui

m+1

b

| B(S.1B.) = Sal = || S e

2. Let {X,,®B, be an adapted uniformly integrable sequence
with |E(X,.,18,) — X,| = ¢, where {c,} is a sequence of constants
with 3¢, < . Then there exists xe <, with X,— X almost
everywhere and in the &-norm.

Proof. We have
E(X,|8,) — X, = gE(X,,H ~ X,|B,)
= 5 BB, — X.1B)|B,).
Thus

|B(X,|B,) — X,| < %_ ¢, .

Editorial note. See also R. Subramanian, “On a generalization
of Martingales due to Blake,” Pacific J. Math., 48, No. 1, (1973),
275-278.
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