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In this paper a comparison is made between c-density and
k-density in the general setting of Freedman density spaces
in additive number theory. The comparison is motivated by
the following question of Freedman: Does there exist a den-
sity space and a set such that the c-density of that set is
positive and the k-density is zero? The answer is yes. More
generally, there exists a density space such that for any two
real numbers p; and p, with 0 < p; < p; < 1, a set can be con-
structed such that the k-density of the set is p; while the
c-density is p..

Let S be any nonempty subset of an abelian group G with binary
operation -+ and identity element 0. We define a relation < on S by
saying y < x whenever x — y e S\{0}. The set S is called an s-set
whenever the following conditions hold:

(s.1) 08

(s.2) S\{0} = ¢

(s.3) S\{0} is closed with respect to .

(s.4) L(x) ={y|lyeS,y <z ory=ua} is finite for each x ¢ S\{0}.

Corresponding to each x ¢ S\{0}, let H(x) be a subset of S satisfy-
ing the following three conditions:

(c.1) {0, s} & H(x)

(c.2) H(x) & L(z)

(c.8) if ye H(x)\{0}, then H(y) & H(x).

Let & (H)={F|F<S,F finite, 0eF, F\{0} == ¢, x ¢ F\{0} implies
H(») & F}.
Then & (H) is said to be a fundamental family on S.

Freedman [1] calls the ordered pair (S, & (H)) a density space
whenever S is an s-set and # (H) is a fundamental family on S.

For any two sets X, D < S with D finite, let X(D) denote the
number of nonzero elements in X N D.

DEFINITION. The k-density of a set A & S with respect to & (H),
written «,, is

@, = glb{—g%lﬁ’e ﬂ‘(H)} .

DEFINITION. The c-density of a set A & S with respect to F (H),
written a,, is
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_ A(H(2))
a, = glb{m e S\{O}} .

We begin our comparison of k-density and c-density by stating
without proof the following two results of Freedman.

THEOREM 1. Let (S, & (H)) be a density space. For any set
A Swe haove 02 a, =, < 1.

THEOREM 2. Let (S, & (H)) be a density space and A be a subset
of S with 0eA. The following three conditions are equivalent:
() a, =1, (i) ., =1, and (iii) 4 = S.

For the remainder of this paper we suppose that e, <1. Freedman
posed the following question [1]: Does there exist a density space
(S, &# (H)) and a subset A of S such that @, > 0 and a, = 07 The
answer is yes.

ExampPLE 1. Let I be the set of nonnegative integers with the
usual addition and let d be any positive integer. Let H(x) be defined
by

~({0,1,2, .-, d} U {a} if e=d+1,
{0, @} otherwise ,

where xe I\{0}. Then (I, & (H)) is a density space. Let A=
{0,1,2, ---,d}. Then o, =0, but a, = d/(d + 1) > 0.

Example 1 shows that there are density spaces for which a;, = 0
and «, is arbitrarily close to (but not equal) 1. Example 1 also
answers a second question of Freedman [1]: Does 0ec A and a, > 0
imply that A is a basis for I? The answer is, of course, no. The
set A has finite cardinality and hence cannot be a basis for I.

H(z)

ExAmMPLE 2. Let I” denote the set of all zero terminating
sequences of nonnegative integers. Then (I, &# (L)) is a density
space. For any positive integer N = 2, let

IP\A = {(z,, %, --+)| 2; = N for all ¢ and z; = N for exactly one 73} .

Then a, = 0 and a, = (N — 1)/N which again answers Freedman’s
first question. This density space is less artificial than the space in
Example 1. However, it does not serve as an answer to Freedman’s
second question.

In the final theorem of this paper we show that it is possible to
create a density space for which there exist sets having any k-density
and c-density we want as long as Theorems 1 and 2 are not violated.
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THEOREM 3. There exists a density space (I, & (H)) such that if
00, =0.<1, then there is a set A< I such that @, = p, and

o, = 0,
Proof. Let {(d;, b;)} be a sequence of ordered pairs of positive

integers satisfying 1 < d; < b, where all possible such pairs occur and
occur infinitely often.

For all z e I\{0}, define

{0,1,2,.--, 2}

{O’ 192’ .‘.’dl_l,x}
ifd =20,

{0,b1+19b1+2"”’x}
ifb+1=0=b+d, -1,

{O,bl+1yb1+2’”'7b1+d2_1,x}
ifb,+d,<x=<b +0,,

(1) Hw =
i b+ lsas b+ dy—1,

0, 350+ 1, 3 b; + 2, ++v, 336y + dyy — 1, 1)
it 36+ dnSas b,

The space (I, & (H)) is a density space.
Let o, and p, satisfy the hypothesis of the theorem. Let {u}
and {v;} be strictly decreasing sequences of positive rational numbers

less than 1 such that
0, =glb {uili: 1y2’ "'}1
0. =glb {v;|t1=1,2, ---}, and u; < v; for each ¢.
Since u; and v, are positive rationals, there exist positive integers
a;, b}, and d} such that ; = a,/b} and »; = a;/d;. Since 0 < u; < v; < 1,
we have 1 £ a; < d} £ b.. Furthermore, there is a strictly increasing
function 7(s) such that b, = b,,, and d;, =d,,, for s=1,2, ..., Let

A= {O}U{xlxel,i‘,bi—l- 1 gxgjijb,., where 7 = 0 and
J+ 13 r(s) for all s}

=1 =1

Uﬁ{xlwel, m}i‘:lbi—{— lgxs_”i‘,lbi-l—a,}.
s=1 3
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We now show that a, = 0, and @, = 0,.
For each positive integer s, we have

A b+ d))

i=1

(S b+ ) P

i=1

Qs

s *

Since o, = glb {v,|s =1, 2, ---}, we have @, < p,. Also for any positive
integer m there is an integer 7 = 0 such that 3., b, + 1 = m < 3! b,.
If 5 +1 = r(s) for some s, then

fr(s)—1

Ay . AE(E b do)) 4
I(H(m)) — I(H(mz)"—l b, + d “\> d, ’

= ")

Otherwise A(H(m)) = I(H(m)).
Therefore,

_ AHm) |, _ _ _
, =gl &)y 1 2 otz glb{|s=1,2 -2} =p,.
a, =g {I(H( ))‘m } glb{v,|s }=p
Hence we have a, = 0.

It is more difficult to show that e, = p,. For each integer j = 0,
define that set F; by

F,-:{o,iz;bwl,iZibﬁZ””’gb‘}'

By formula (1) we have

ma(g)

F;= _U(,) H(m) ,
where m,(j) = 3., b; + 1 and m.(j) = 31 b;, and hence F;e 7 (H).
If 5 + 1 = r(s) for some s, then

(2) AF) _ G G g

I(Fg) bi+1 br(s)

Since o, = glb {u,|s=1,2, ---} we have a;, < 0. Now consider any
Fe 7 (H). For each integer § =0, let G;=FNF;. Now since
Fe s (H) and F;e & (H), we have G;e . (H) U {{0}}. Now ¢ #j
implies F;; N F; = {0} and hence G; N G; = {0}. Also F'is finite. Hence
there is a finite integer

J = max {j | G\{0} = ¢} .

Now if G\{0} = ¢, then G, # (H). If GNA # ¢, then j + 1 = 7(s)
for some s and
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8)—1 r{s)—1

{Tglbi+ 1: HZ‘J bi+2, cccy 2_.‘. bi + as}nggFj,
and so
(3) AG) o A

I(G) I(Fy)

If G\A = ¢, then A(G;) = I(G;) and inequality (3) still holds. There-
fore, by statement (3) and since G; N G; = {0} for 7 +# j, we have

Ary _AUGE)  XAG)  agy . Aw)

for some 1 1 =£1=J). If ¢4+ 1= r(s) for some s, then by statement
(2), we have

AF) _ w, .

I(F)
If i+1%2(s) for all s, then A(F) = I(F;). In either -case,
A(F)/I(F) = u, for some s. Therefore,

@, = glb{%lﬁ’eﬁ'(ﬂ)} > glbfu,|s=1,2 -} = 0, .

Hence we have a;, = p..
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