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ERGODICITY IN VON NEUMANN ALGEBRAS

CHARLES RADIN

We investigate the ergodicity of elements of a von Neumann
algebra 2 under the action of an arbitrary cyclic group of
inner *-automorphisms of 9. A simple corollary of our results
is the following characterization: A von Neumann algebra
is finite if and only if for each A € and inner *-automorphism
a of %, there exists A such that 1/N S ¥=la"(A) —A

N-ooo
in the weak operator topology.

1. Introduction. Our purpose is to explore in a new direction
the ergodic theory of von Neumann algebras presented by Kovics
and Sziies [2]. In [2] the essential contribution was the introduction
of a certain restriction (called G-finiteness) on a group of *-automor-
phisms of a von Neumann algebra, fashioned so that all elements of
the algebra behave ergodicly with respect to the group. Instead we
consider the action of a natural class of (cyclic) groups of *-automor-
phisms, namely the inner ones, and investigate which elements of the
algebra behave ergodicly with respect to all such groups.

2. Behavior of infinite projections. From the ergodic theory
developed in [2], we note the following simple consequence.

THEOREM 0. (Kovacs and Sziics). Let U be a finite von Neuwmann
algebra. For each Ac and each inner *-automorphism « of U,
there exists AeA such that 1/N >\ a”(A)ﬁ;;»A i the strong

operator topology.

Our first result is a complement to this and provides a new
characterization of finiteness for von Neumann algebras.

THEOREM 1. Let U be a von Neumann algebra. For each nonzero
infinite projection Pe there exists an infinite projection e,
g < P, and a unitary Uc U, such that 1/N Y2 U6 U does not con-
verge in the weak operator topology.

First we need the following lemma.

LEMMA. There exists a mnonzero properly infinite projection
P <P

Proof. Let S be the set of all central projections £ of % such
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that EP is finite. 0e S so S is not empty. Let {E,} be an orthogonal
family of elementsof S. If 3, E.P~ Q< 3, E,P(where ~ is the usual
equivalence relation for projections in ), then E,P ~ F,Q < E,P so
that E,Q = E,P and therefore @ = >, E.Q = >, E.P. Therefore, Q —
. E.P and 3, E,P is finite. It follows easily that there exists a
(unique) maximal element F' in S. From [1, II1.2.3.5] it follows that
(I—F)P is nonzero and infinite. Assume it is not properly infinite.
Then from [1, II1.2.5.9] there exists a central projection G such
that 0% G(I— F)P is finite. But then from [1, II[.2.3.5] F<F +
G(I — F') € S, which contradiction proves our lemma with P’ = (I — F)P.

Proof of Theorem 1. From [1, I11.8.6.2] there exists a set
{P, | neZ} of nonzero projections P, e? such that P,P, = 4,,,P, and
P, ~ P, for all m,neZ, and such that 3, .<nP. - in the

strong operator topology. Therefore, there exist V,e W such that
V,*V,= P, and V,V,* = P,,, for all neZ, so that P,,,V,= V,P,
and P, V,* = V,*P,., for all n e Z, Define for each f e 5~ (the Hilbert
space of definition of ),

Uf = (norm lim V.P.f) + (I — P)f,

m—eo |n|Zm

where the limit exists since ||V, P.f|| = | P.f|l and V,P.f = P, V.f
so that {V,P,.f|ne Z} are pairwise orthogonal and

SUVPFIE= S PSS IPFIE

In fact U is clearly a linear and norm preserving surjection, and
therefore unitary. Now since

(Z VkPk>norm lim 3\ P,.f= 3 V.P.f

ikl=l m—ooe |n|2m Inisi

it follows that U;=1 — P’ + Z VkPk has U as a strong operator limit

as [— co, Therefore, Uec?l. It also follows that UP, U™ = P,,, for
all neZ, and so by induction U"P, U™ = P,., for all m,necZ.
Now define g: N — {0, 1} by

if 3™ < n <3 for some meN

g(n) :#( .
l if 3t < n <3 for some meN.

Then define @ as the strong operator limit as
K— — o of 30.x g(—m)P,, ,

and let +» be a unit vector in P,.2#. Now consider
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<q;f, 1/N:§:]—: U6 U—w> - l/Nng <¢, U U 0¢>

N—1

= 1/N glm g(—m)<«/r, Pn+me>

=0 m=—

- 1/N:§1 g(n) .

It is easy to see that for all Me N, 1/3+ S¥¥+ 1 g(n) = 2/3 yet
1/32+2 St () <1/3, and the theorem is proven.
Using Theorem 0, we have immediately,

COROLLARY 1 (resp.2). A wvon Neumann algebra U is finite if
and o'n_ly if for each Ac and inner *-augomoaﬂphism a of U, there
exists A € W such that 1/N SV a™(A) ﬁ(;»A in the weak (resp. strong)

operator topology.

3. Finite elements. Theorem 1 raises the question of the ergodic
behavior, under arbitrary inner *-automorphisms, of “finite elements”
of infinite von Neumann algebras. The following theorem gives some
information in this direction.

THEOREM 2. Let U be a von Neumann algebra and v a faithful
normal semi-finite trace on WAt invariant under the *-automorphism
a of U. Then for each A c U such that T(A*A) < oo, there exists A e
such that 1/N >t a™(A) oo A in the strong operator topology.

Proof. First we define the following (standard) objects: see e.g.
[1, 1.6.2.2]

Il lz: Ae A — [c(A*A)]"
A" ={AcU|[[Afl, < o}

Let L, be the abstract completion of _#~ in the norm || ||,, and extend
I| 1l to L, in the usual way. Let ¢ be the isometric embedding of
4" into L, L, is a Hilbert space with the obvious addition and
scalar multiplication, and inner product <, > defined as the extension
to L, x L, of

T:A X Be 4" X A4 —>(A*B).
We note the simple inequalities

|AB|, < ||A||||B|. for all Be 4", AeX
I|AB|, < || Al.||B]|  for all Be 4", Bedl.
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We then define the C*-representation = of % on L, by
n(A)i(B) = 1(AB)

and noting that ||w(4)i(B)|, = || AB|. < || A||||B|l. so that 7(A) ex-
tends uniquely to L, by continuity. It is easy to see that x is faithful
and normal and that

U: i(B) — i(a[B]) for Be 1+~
extends to a unitary operator on L,. Defining, for Be ¥,

B, = %Nz—‘f a™(B), we know by von Neumann’s
n=0

mean ergodic theorem that for each Ae._#", i(Ay) is || |.-Cauchy.
Define for each Be 77,

D,: i(B) — norm lim 7(A4,)#(B)
N—ooo

which limit exists since
| m(Ay — Ay)i(B) ||, = || Ay — Ay |l 1| Bl -
D, is obviously linear. Furthermore,

1 D4i(B) [l = lim || 2(Ay)i(B) |l = | A[| [ Blls

so D, extends uniquely to a bounded operator on L, by continuity.
It is easy to see that m(A,) converges to D, in the strong operator
topology. Since 7 is normal, 7(2) is strong operator closed [1, 1.4.3.2]
so there exists Ae¥ such that D, = w(4). Since m is faithful,
Ay K;?A_ in the strong operator topology [1, 1.4.3.1].

COROLLARY 1. Let U be a countably decomposable von Neumann
algebra. For each finite projection Pe N and inner *-automorphism
a of A, there exists Pe A such that

N—1 —
% > a*(P) Noo P inm the strong operator topology .
M=0 —00

Proof. Let
Aeglf-——’Al@Aze%@%z

be the canonical decomposition of 2 into its countably decomposable
semi-finite and purely infinite components. From [1, 1.6.7.9] we know
that any finite countably decomposable von Neumann algebra has a
faithful, normal, tracial state. Inserting this fact into the proof of
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[3, 2.5.3], we see that there exists a countable faithful family
{r.| n € N} of normal semi-finite traces on 9] with pairwise orthogonal
supports such that 7,(P,) < « for all ne N. Define

o = 3 o,/leP) + 2J°

on A ; it is faithful, normal and semi-finite. Since « is also inner
for 9, and therefore leaves 7’ invariant, we may apply Theorem 2 to
N,. Since P, = 0 from [1, II1.2.4.8], we are finished.

In the countably decomposable case, Theorem 2 gives us an es-
sentially different proof of Theorem 0, namely

COROLLARY 2. Let U be a finite countably decomposable wvon
Neumann algebra. For each AcW and inner x-automorphism o of U,
there exists A e U such that

N—1 — .
Nﬂ% a"(A) TV:;A in the strong operator topology .

Proof. Just combine the existence of a faithful finite normal
trace on A+ [1, 1.6.7.9] with Theorem 2.
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