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GENERATED BY THE BERGMAN OPERATOR
OF THE SECOND KIND

P. ROSENTHAL

Let v (2, y) = P(f) be Bergman’s integral operator of
the second kind with domain of definition

W={@ 9372 <y, 20, y>0}.

Let f(q)=(q— A AcW. In this paper it is shown
that 7(1, y) has singular points z =24, 241 — w), where
w=A"12 and z =2 + 7y.

Let
dt
vV1i-=¢
be Bergman’s integral operator of the second kind. P,(f) maps

functions f analytic in one variable in the neighborhood of the origin
into solutions of the linear partial differential equation

V2 = P(f) = | B, 0 (£0- 1)

qzr,,*+N<z';z*)(¢,+¢,,):0, z=N+1y, 2*=\-—1y,
N\ = —@1/120)@ + b(—N)**+ ---) is analytic for —o <A <0 and
singular at » = 0. E(z, 2%, t), called the generating function of the
operator, is analytic in the three variables z, z*, and ¢ providing
[z + 2% | < |tz ], | is some rectifiable Jordan curve in the upper com-
plex t-plane connecting the points —1 and 1, [1], [3].

In a previous paper [7] we obtained some results on the singu-
larities of P,f) where f is meromorphic and 2z, z* were treated as
independent complx variables. In this paper we let 2* = Z (conjugate
of z2) and N(\) = —1/12x (Tricomi case). With these assumptions,

v Y) = Sl_l E(u)r/_{—%)?dt , where wu= _2%. ,
z=x+1,

E(u) = HM(F P (u) + F @ (u)), F®(w) = Cu™°F\(1/6, 2/3, 1/3, 1/w),
F®w) = CuFy(5/6, 4/3, 5/3; 1/u), F; is the hypergeometric function
j=1,2, H\) = C\"%, C; are constants, 7 =1,2,8, (\,y)e W=
{,y) 132N <y, A=0, y >0},

241
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! (the path of integration = {t|¢ = ¢*,0 = ¢ < 7}, [4, p. 107].

THEOREM. Let f(@)=(A—¢)™", A=Nn+1y,eW, MA=w=
s+1i0, z=n+1y, S, = {(w,?) |2 = 24, )2z argw = a,, T/2>a,>r/3,
0<o,=|w|=1/4—0, 1/4>0,,0.>0, 1/4 > 6, + 03},

S; = {(w, 2) |z = 2A(1 — w), same conditions on w as in S},

S:={(0,2y)}. Let T=8S,US.US,, Then T is a singular set for
at least one of the branches of +(w, 2) defined in ().

Proof. We consider first the case where E(w) = HM\F “(u).

Domain considerations. (3), (4) imply +(w, 2) is analytic function
of the two complex variables w, z for disc neighborhoods satisfying
0<|w|<1/4, |A/2] <|z|<|A|, where we have extended A to the
complex variable Aw. Note (1) implies we must specify branch cuts
in our definition of +(w, z). Since z = A + iy (see (1)), we must also
consider the extension of A, ¥ to complex values subject to the above
inequalities. Thus we can also obtain nonempty neighborhoods N;(\),
N,(y) such that (), %) is an analytic function in A, y, where \, ¥
now have been extended to complex values.

In what follows we treat «+(w, z) as an analytic function in 2z for
fixed w.

Consider the function obtained from (1) where we have used the
series definition for F(u),

(2) f()\,, y) = Sl iw_ i(ziAy’(l _ tz)pt—lls.‘/ dt ,

—1 =0 Pad =0 11t

a, = (I'(p + 1/6)I"(p + 2/3)/(p + 1/8)(p + 1)), I' is the Gamma
function, |z| < A4, |2\] < |z]|. From (2) we obtain two series,

S (Sa(L) e — o) (&)
8 (B (B ormia e (2))
2l <|Al, |2n] < |z].

(3)

|

We will limit ourselves to the first series in (8) for our analysis of
the singularities of P,(f). When |N|Z|A/2] -6, |2| < |4A]— 6,
|A/2| >8>0, the operations of summation and integration (with
respect to t) can be interchanged in the first series of (3), our inte-
grals are in the improper Riemann sense. Integrating the first part
of (3) by parts, then using the formula,
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R 241 a1 iy T(13) (v + 2/3)
/ 1 — +16 MY 1 _ ! ,
L -y = — g 0 — ey EERCRT
[2, p. 83], we obtain the function
S EAY
(4) fiw,2) = 3 8,00 ()
where

= . Ik + 18Ik + p + 1/2)
(5) o) = 2 At Ay = I'(k + 1/3)"(k + 1I'(p + 5/6)

(5) can be rewritten as

a = TAS)I1/2 + p)
T T3 (56 + )

(6) Br(w) = a,e,(w) ,

c,(w) = Fy(1/6,1/2 + p, 1/3; w), F, a hypergeometric function. Using
the asymptotic formula for F, for large p [6, pp. 235, 241 (23)], we
can write ¢,(w) as

¢(w) = a, (W)™ R, + a,w)(L — w)rR,,
() ) = (r(3)) r(%)wwr,

o

p sufficiently large, weT ={w|0<d S |w|=1/4~0,, 1/4> b,
0, >0, 1/4>6, + 0, w/2=argw = a,, 7/2 > a, > 7/3},

Ri(p, w) =1+ R (p, w) ,

lim,... pR{(p, w) = h;(w) = 0 uniformly for we T, j =1, 2. Using
(6), (7), we can rewrite (4) as

=py=1 oo o
£, 2 = "3 e, (Z) + 2o, wm+ T apw,
( 8 ) »=0 2A p=py+1 P=py+1
z - %
] = =y == 1 —_ 1z y
Y z=(1-w 24

and
(9) alp, w) = a,a,(we*R,,  c(p, w) = a,a,(w)(l — w) PR, ,

see (6) for the definition of a,, (7) for a,(w).
From (9) we obtain

(10) o = lim [cy(p, w) [7* =1,
p—roo
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the radius of convergence of the second and third series in (8), and
—e < argc;(p, w) < e, 0<e< w2 p sufficiently large, we T, 7 =1,
2,

Proof of (10). From (7) we obtain
1+52|R](p,W)|;1—8>0,

1>¢>0, p sufficiently large, we T,. So we can take the pth root
(say principle branch) of ¢;(p, w), 7 = 1, 2, ef (9).

Using the asymptotic formula (I'(p + A)/I'(p + B))~p*" %, we
conclude the first part of (10). Since lim,_., (1 + R?(p, w) = 1, we T,
see (7), the second part of (10) follows.

(11) z2=2A and z=2401-w), weT,
are singular points of (8).

Proof of (11). (10) satisfies the hypotheses of a theorem of
Dienes [5, p. 227]. From this theorem we conclude z = 24 and z =
2A(1 — w) are singular points respectively of the second and third
series in (8). Further, c¢;(p = & = pe®¥, w) (see (9)) is an analytic
function in & in the half-plane 2, = 1, & = «a, + 1¥,, and

le,1 + pe¥, w) [ < e?, >0,

and arbitrarily small, o > 0 and sufficiently large, and —7/2 < < 7/2,
weT, =1, 2. This follows from a definition of the remainder
term R{’ (p, w) of (7), see [6, p. 235]. Hence by a theorem of Le Roy
and Lindelof [5, p. 340], we conclude the only possible singular points
of the second series in (8) are the points on the ray @ = @, @, =
arg 24, joining 2A to infinity and the only possible singular points
of the third series in (8) are the points on the ray o =4,
0, = arg 2A(1 — w), we T, joining 2A(1 — w) to infinity. Further,
arg 24 =+ arg (2A(l — w)), we T.. Hence the singular points z = 24,
z=2A0 — w), weT,, of the second and third series respectively
are not removed upon addition of these two series in (8). This com-
pletes the proof of (11).

12) (0, 2y,) is a singular point of r(w, z) .

Proof. Let w=NA=x=0. (3) then reduces to the first
series, and (4) reduces to the hypergeometric function F,(1, 1/2, 5/6;
(/2y,)) times a constant. F, is singular at the point y = 2y,, so (12)
holds.

From (11), (12) we conclude T is a singular set (see Theorem for
the definition of T) of «(w, 2) for the case F,.
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Proof. We note the second series in (3) when integrated with
respect to t gives rise to a function f.,(w, 2) which is regular at the
points in 7.

For the case F, (see (1)) we use the formula

! —5/3 42\ 156 dt — _1_ —2xif3) I(=1/3)I"(v + 4/3)
g—1t (=% vVii—g 2(1 ) I'iv+1)

[2, p. 33].

Proceeding as above, we then conclude T — {(0, 2y,)} is a singular
set for the case F, (1) thus can be written as the sum of two
functions,

(13) (w, 2) = W (9(w, 2) = 2*°P(w, 2) + Py(w, 2)) ,
where P; is singular at the points in 7 — {(0, 2¢,)}, 7 = 1, 2. This
follows from the linearity of the operator P,(f).

At least one of the branches of g(w, z) of (15) is

(14) . C L
singular for points in 7 — {(0, 2y,)} .

Proof of (14). #*® can be one of the three branches,
o, = R2i3gi2i30 , Ay = R23gi2/30+2/37) , Q= R2/36i<2/30+4/3x)’ T>60> —1.

We form the sum
ﬁ (w, 2) = zaP(w 2) -+ 3Py(w, 2) .

We note 3, a,P(w,2) =0, |w|<1/4; [A)2| < |z]| <]|4A]| (see (3)).
So if all the branches of +(w, z) in (13) were regular at the points
in T — {(0, 2y,)}, then P,(w, z) would be regular at the same points,
a contradiction. For w = \/A = ), =0, P50, 2) = 0, hence (0, 2y,) is
a singular point for all branches (13) (see (12)). This completes the
proof of our Theorem.
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