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It is shown that any uniformly integrable fairer with time
game (stochastic process) converges in L;.

1. Introduction. Let(2,%, P) be a probability space and {Z/,},-.
an increasing family of sub o-algebras of Z/. Let {X.,}..: be a sto-
chastic process adapted to {Z.}.z, (see, [2, p. 65]). Following Blake [1]
we refer to {X,}.:;, as a game and define

DEFINITION. The game {X,},.; will be said to become fairer with
time if for every ¢ > 0

Pl|EX,/z"m) — X, | > ¢e]—0

as n, m— o with n = m. Any martingale is, trivially, a fairer with
time game and thus this concept generalizes that of martingales.
Blake, in [1], gave a set of sufficient conditions under which any
uniformly integrable fairer with time game {X,},.. is convergent in
L,. We show that these sufficient conditions are not needed; in fact,
we show that any uniformly integrable, fairer with time game con-
verges in L.

2. THEOREM 2.1. Any uniformly integrable fairer with time
game {X,},», converges in L.

Proof. To facilitate understanding, we break up the proof into
a few important steps numbered (S1) through (S5). For every m and
n = m define Y, , = E(X,/%,). Let I" stand for the family {Y, .,
for all m and n = m}.

(S1) I is uniformly integrable.

Since {X,},z; is uniformly integrable there exists a function f
defined on the nonnegative real axis which is positive, increasing
and convex, such that
imf® = 4 o

t

t—oo

and sup, E[feo | X,|] < . (See [2, II T 22].) Now,
Elfe|Ynall = Elf o | E(X,/ %) |]
< E|fo. E(X.,|/% )] (since f is nondecreasing)
= ELE(f o | Xo |/ Za)]
= E[f-|X.1].
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Therefore,
sup E[f | Y,,[] S sup Elf o | X,]] < oo .

Ym,n€

Another application of II T 22 of [2] ensures that 7" is uniformly
integrable. Hence (S1).

(S2) Given & > 0, there exists M such that for all m = M, one
has

E(|X,—Y,.) <2 forall n=m.

Since I" is uniformly integrable given & > 0 there exists 6 > 0
such that P(4) <6 implies g | Y,..|dP < ¢/2, forall Y, .eI'. Choose
4

M so large that m = M and n = m implies P[| X,, — E(X,/U,)| >¢] <é.
Then, it is not difficult to see that

E[\X, —Y,.]1=22 forall m=M and n=m.

(S3) For every fixed m, the sequence {Y,,. converges in L, to
an %/, measurable random variable Z,.

Let m<n <.

Ell Ynn— Youll = Bl E(Xo/Z0) — E(Xu|Z )]
= Bl E(X, — X.[%,) ]
= E[| E(E(X, — Xo|ZZ )} %) |]
=S E[E({| B(X, — X[Z%0) [} 7,)]
= E[| B(X, — X, [%,)|]
= B[ X, — Yaull-

Now from (S2) it follows that given & > 0 for all sufficiently large
n and n’

Bl Yy — You ll £ E[[(X, — Vo)l = 26

Hence, for m fixed, the sequence {Y,,} is Cauchy in the L,-norm.
So, there exists, an integrable random variable Z,, such that,

Ym’”,fTLSZ”‘ Without loss of generality we can take Z, to be %,

measurable. (Note that each Y, ., is %, measurable and there is a
subsequence {Y,,.} converging almost surely to Z,.)

(84) {Z,., Z n}m=1 is a uniformly integrable martingale.

The fact that {Z,}..: is uniformly integrable follows trivially
because the closure in L, of a uniformly integrable collection is
uniformly integrable. (See, [2, IT T20].) To show {Z,, %} is a mart-
ingale it is enough to show that for every m, E(Z,../%,) = Z, a.S.
Since
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El| E(Y pirnl % w) — E(Zpsi] %) ]
= E[| B{(Yui1n — Zn+1)/ %} |]
S EE{|(Yoiin — Zint) || Z0}]
= E[| Yosis = Zpi:l] — 0 as n——> oo,

there exists a subsequence n' of {n:n = m} such that

B(Y sy | Zw) ~2s BT | %) -

We can assume (— if necessary, by choosing a further subsequence, —)
that Y, . 25, Z.. Now,

E(Zm+1//2/m) = lim E( Ym-)—l.n'/%m) a.8.

n!—co

= lim B({B(X,|Z p+ )}/ %)  8.5.

N’ oo

= lim E(X, /%) a.s.

n’—co

= lim Y,,. a.s.

n'—oco

=L, a.8.

Hence (S4). (85) {X,}.», converges in L..
Since {Z,, Zu}az: is an uniformly integrable martingale, there

exists an integrable random variable Z. such that Z,,;%—::OZN. We

shall show that Xng_%;Zw. From (S3) and (82) it is easy to check
that given &€ > 0 there exists M such that for all m = M

ngm—ZmIdP§2e.
Therefore, for sufficiently large m,
S}Xm—— Z.|dP < g | X, — Z, | dP + Sizm— Z.|dP < 3¢,

say. Hence (S5) and the theorem.

Since any game (stochastic process) {X,},., converging in L, can
be taken to be a game fairer with time, by setting %, = % in n,
we get the following corollary.

COROLLARY 2.1. Let {X,},:: be a game. It converges in L, if
and only if it is uniformly integrable and fairer with time with
respect to some increasing family of sub o-algebras {Z,}ns to which
it is adapted.

Let p > 1.
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THEOREM 2.2. Let {X,}.. be a fairer with time game with
{| X, 1P} nzr uniformly integrable. Then {X,},», converges in Lp.

Proof. Noting that the function f defined on the nonnegative
real axis by f(f) = t* is positive, increasing and convex and
lim,_., (f(£)/t) = + oo, in view of II T 22 of [2], it is clear that {X,}..,
is uniformly integrable. Hence by Theorem 2.1 it converges in L;;
in particular, {X,},., converges in probability. Therefore, {X,}.s:
converges in L,. (See Proposition II 6.1 of [3].)

COROLLARY 2.2. The game {X,}.». converges in L, if and only
if {| X, 1%zt ts uniformly integradble and {X.}.», is fairer with time
with respect to some increasing family of sub og-algebras {Z/,}.z: t0
which it is adapted.

ReMARK. In view of our Theorem 2.1, the second convergence
theorem of Blake in [1] becomes redundant.
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