
Pacific Journal of
Mathematics

A TOPOLOGICAL CHARACTERIZATION OF COMPLETE,
DISCRETELY VALUED FIELDS

SETH WARNER

Vol. 48, No. 1 March 1973



PACIFIC JOURNAL OF MATHEMATICS
Vol. 48, No. 1, 1973

A TOPOLOGICAL CHARACTERIZATION OF COMPLETE,
DISCRETELY VALUED FIELDS

SETH WARNER

It is shown that the topology of a topological field F is
given by a complete, discrete valuation if and only if F is
locally strictly linearly compact. More generally, the topology
of a topological division ring K is given by a complete, discrete
valuation and K is finite dimensional over its center if and
only if K is locally centrally linearly compact, that is, if and
only if K contains an open subring B, the open left ideals
of which form a fundamental system of neighborhoods of
zero, such that B, regarded as a module over its center, is
strictly linearly compact.

In [5], Jacobson showed that the topology of an indiscrete, totally
disconnected, locally compact division ring is given by a discrete
valuation (that is, a valuation whose value group is isomorphic to the
cyclic group of integers). Consequently, an indiscrete topological
division ring K is locally compact and totally disconnected if and only
if its topology is given by a complete, discrete valuation whose residue
field is finite [4, Prop. 2, p. 118, Prop. 1, p. 156]. From this, it follows
rather readily that the center C of K is indiscrete, that K is finite
dimensional over C, and that C is either a finite extension of the
p-adic number field for some prime p or the field of formal power
series over a finite field [4, Theorem 1, p. 158].

Our purpose here is to generalize Jacobson's theorem by character-
izing those topological fields whose topology is given by a complete,
discrete valuation, and more generally, those topological division rings
K such that K is finite dimensional over its center and the topology
of K is given by a complete, discrete valuation.

For this purpose, we assume some familiarity with basic properties
of linearly compact and strictly linearly compact modules and rings,
as developed in [10] or [3, Exercises 14-22, pp. 108-112]. We recall
that a (left) topological A-module E (it is not assumed that E is
unitary) is linearly topologized if the open submodules of E form a
fundamental system of neighborhoods of zero; E is linearly compact
if E is Hausdorff, linearly topologized, and every filter base of cosets
of submodules has an adherent point; E is strictly linearly compact
if E is linearly compact and every continuous epimorphism from E
onto a Hausdorff, linearly topologized A-module is open (equivalently,
if E/U is an artinian A-module for every open submodule Uof E). A
topological ring A is respectively linearly topologized, linearly compact,
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or strictly linearly compact if the associated left A-module A is.

DEFINITION. A topological ring A is locally strictly linearly compact
if A has an open subring B that is strictly linearly compact for its
induced topology.

To handle the noncommutative case, we need the following defini-
tion:

DEFINITION. A topological ring B is centrally linearly compact
if the open left ideals of B form a fundamental system of neighbor-
hoods of zero and if B, regarded as a module over its center CB, is a
strictly linearly compact C^-module. A topological ring A is locally
centrally linearly compact if A contains an open subring that is
centrally linearly compact for its induced topology.

Thus a commutative topological ring is (locally) centrally linearly
compact if and only if it is (locally) strictly linearly compact. Note
that if B is a centrally linearly compact ring, then for any subring
Bo of B that contains the center CB, B is a strictly linearly compact
I?0-module (in particular, B is a strictly linearly compact ring); indeed,
since the open left ideals of B form a fundamental system of neigh-
borhoods of zero, B is a linearly topologized J30-module, and since a
J50-submodule is also a C5-submodule, every filter base of cosets of
J50-submodules necessarily has an adherent point.

By a topological division ring (field) K we mean a topological ring
that is algebraically a division ring (field); that is, we do not assume
that x!—> x"1 is continuous on the set K* of nonzero elements.

LEMMA 1. If B is an open, centrally linearly compact subring
of an indiscrete topological division ring K, then there is an open,
centrally linearly compact subring B1 of K that contains 1.

Proof. Let Bι be the closure of the subring generated by B and
1. The open left ideals of B then form a fundamental system of
neighborhoods of zero in B^ each open left ideal α of B is a left ideal
of B19 for as α is closed, {x e B^. xa ξΞ= a] is a closed subring of B1

containing B and 1 and hence is all of Bλ.
Since B is open, B Φ (0); let b be some nonzero element of B,

and let e be its inverse in K. Then, Bt — BJJC £ BLBc, so Bx £ Be
since, as we saw above, B is a left ideal of Bx. Thus Be Ξ> 1^3 B,
so Be is a linearly topologized C^-module, where CB is the center of
B. Hence Be is a strictly linearly compact C£-module, as it is the
image of the strictly linearly compact C^-module B under the con-
tinuous homomorphism xv->xc. Consequently, the closed Cβ-submodule
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Bt of Be is strictly compact; as CB is contained in the center of Bu Bt

is a fortiori strictly linearly compact over its center.
We recall that an element α of a topological ring is topologically

nilpotent if lim an = 0.

LEMMA 2. Let K be a Hausdorff topological division ring, let B
be an open subring of K that contains 1, and let x be the radical of
B. If B is strictly linearly compact, then B is a (left) noetherian
ring, B/τ is a division ring, the topology of B is the x-adic topology,
and x is the set of all topological nilpotents of B.

Proof. As B is open and as y H-» yx is a homeomorphism for each
x e ίΓ*, Bx is open for every x e K*, and hence every nonzero left ideal
of B is open. Let δ = Π"=iχW Assume that 8 =£ (0). Then § is
open, so B/& is an artinian 5-module and hence an artinian ring.
Consequently, its radical x/3 is nilpotent, so there exists n such that
xn = $. Hence (0) Φ xn = xn+1 = , in contradiction to [10, Theorem
9]. Therefore, n~=i** = (0).

Since every nonzero left ideal of B is open and hence closed, B
is a (left) noetherian ring, B/x is an artinian ring, and the topology
of B is its x-adic topology by [13, Theorem 16]. Consequently, every
element of r is a topological nilpotent. Therefore, as B is complete,
B is suitable for building idempotents [11, Lemma 4; 6, Definition 1,
p. 53]. Thus every idempotent of B/x is the coset of x determined by
an idempotent of B [6, Proposition 4, p. 54]. But as K is a division
ring, B has no idempotents other than 0 and 1. Thus B/x is an
artinian, semisίmple ring whose only idempotents are 0 and 1. By
the Wedderburn-Artin theorem, therefore, B/x is a division ring. In
particular, if xίx, then x + x is not a nilpotent of B/x, so x is not
a topological nilpotent.

THEOREM 1. If K is an indiscrete, Hausdorff topological field,
then the topology of K is given by a complete, discrete valuation if
and only if K is locally strictly linearly compact.

Proof. Necessity. It is well known that a complete, semilocal noe-
therian ring, equipped with its natural x-adic topology, is strictly linearly
compact [cf. 13, Corollary of Lemma 2J. In particular, the valuation
ring of a complete discrete valuation is strictly linearly compact.

Sufficiency. By Lemma 1, there is an open, strictly linearly
compact subring B of K that contains 1. By Lemma 2, B is a com-
plete, local noetherian domain, and its topology is its natural m-adic
topology, where m is the maximal ideal of B. In particular, B is not
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a field since B is not discrete. Therefore, as B is open in the topological
field K, the topology of K is defined by a complete, discrete valuation
[12, Theorem 6].

THEOREM 2. If K is an indiscrete, Hausdorff topological division
ring, then the topology of K is given by a complete, discrete valuation
and K is finite-dimensional over its center C if and only if K is
locally centrally linearly compact; in this case, C is indiscrete, and
hence its topology is given by a complete, discrete valuation.

Proof. Necessity. As K is finite-dimensional over C, the valuation
induced on C by that of K is not the improper valuation; hence as C
is closed, the topology of C is given by a complete, discrete valuation
v. Let el9 , en be a basis of K over C such that eλ = 1, and let
Wi = Σ L i ^ i f c ^ Let λ e C be such that v(X) ^ 0 and v(X) ;> —
min {v(aijk): 1 ^ i, j , k ^ n). Let f1 — 1 and /* = λefc for 2 ^ fc ^ w
Let V be the valuation ring of C, and for each m ^ 0 let F m = {# e
F: v(a?) ^ m}. Let 5 = Vf1 + + Vfn, and for each m ^ 0 let bm =
F w / i + + V»/». Easy calculations establish that B is a ring and
that bm is an ideal of B for each m :> 0. By [2, Theorem 2, p. 18],
F: (λi, ••, λΛ) ι-> Σ?=i^ί/« is a topological isomorphism from the C-
vector space C* onto the C-vector space iΓ Hence 5 is an open subring
of K, and (ί>m)m^0 is a fundamental system of neighborhoods of zero in B,
each an ideal of B. We saw earlier that V is strictly linearly compact;
hence as B = F(Vn),B is a strictly linearly compact F-module and,
a fortiori, is a centrally linearly compact ring.

Sufficiency. By Lemma 1, there is an open, centrally linearly
compact subring B that contains 1. Let x be the radical of B. As
the x-adic topology is the given indiscrete topology of B by Lemma 2,
there exists a nonzero aeB such that lima n — 0. Let KQ be the
closed subfield generated by C and α, let JB0 = JBL"0 Π B, and let x0 be
the radical of Bo. Since the open left ideals of B form a fundamental
system of neighborhoods of zero for B, the open ideals of BQ form a
fundamental system of neighborhoods of zero for Bo. Moreover, the
center CB of B is simply C Π B; indeed, if ceCB and if x e K, then
anx e B for some n as lim anx — 0, whence {anx)c = c((Λτ) = (cα*)a; =
(anc)x, so aκ? = ex. Thus CB = C Π B ϋ Z"o Π B = Bo, so J50 is a closed
C^-submodule of B and hence is a strictly linearly compact Cβ-module
Consequently, Bo is a strictly linearly compact ring, so by Lemma 2,
the topology of Bo is the xo-adic topology, and x and x0 are respectively
the set of topological nilpotents in B and BQ, whence ro = ΐ Π Bo.
Hence fl"=i (ΪO B)~ S Π " = I ^Λ = (0). As the topology of B, is indiscrete,
x* φ (0), so x\B is open as it contains a nonzero left ideal of B. By
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[13, Theorem 10], x0B is a finitely generated I?0-module; let τQB =
•BO&L + + Boxm. Also as B is a strictly linearly compact CB-module
and as xQB is open, B/x0B is an artinian C^-module, hence an artinian
j?o-module; now B/x0B admits the structure of J50/x0-module, and BJxQ

is a field by Lemma 2; consequently B/x0B is an artinian, therefore,
finite-dimensional, and hence noetherian J50/x0-vector space; thus B/xQB
is a noetherian i?0-module. Let xm+1, •• ,xneB be such that B —
Bo%m+ι + + BQxn + xQB. Then B = BQxt + + Boxn. Consequently,
xlf , xn is a set of generators of the Ko-vector space K, for if
ze K, there exists t such that aιz e B, whence aιz = b^ + + bnxn

where 6* 6 BQ, and thus z = (flΓ'δi)^ + + (α"**δ»)a?» e KQxx + +
Koxn. By [1, Theorem 16], the centralizer K'o of Ko has degree ^ w
over C. But K[ 3 -K"o

 a s Xo is commutative. Moreover, the topology
of Ko is given by a discrete valuation by Theorem 1, as BQ is an open,
strictly linearly compact subring. Therefore, as [Ko: C] ^ n, the valua-
tion induced on C is not the improper valuation; hence the topology
of C is given by a complete, discrete valuation. As

[K: C] - [K: K0][K0: C\^n\

the given topology of K is the only topology for which K is a Hausdorff
topological vector space over C [2, Theorem 2, p. 18]; by valuation
theory, that topology is given by a complete, discrete valuation.

The idea of using [1, Theorem 16] is suggested by Kaplansky's
treatment of locally compact division rings in [8].

Jacobson's theorem concerning totally disconnected locally compact
division rings follows at once from Theorem 2. Indeed, if K is an
indiscrete, totally disconnected, locally compact division ring, then
K contains a compact open subring B [9, Lemma 4]; the open ideals
of B form a fundamental system of neighborhoods of zero [7, Lemmas
9 and 10], and therefore the compact ring B is clearly centrally linearly
compact; by Theorem 2, K is finite-dimensional over its center, which
is indiscrete, and the topology of K is given by a complete, discrete
valuation.
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