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CONTENT OF THE FRUSTUM OF A SIMPLEX
Mir M. ALl

In the Euclidean space of 7 dimensions, R*, the (n — 1)-
dimensional content of the portion of an (n — 1)-dimensional
simplex contained in a semispace is evaluated. Also, in E»,
the content of the portion of an n-dimensional simplex con-
tained in a semispace is evaluated.

More precisely, the following theorems are proved.

Set up a Cartesian coordinate system in R”* and refer to a general
point in the n-space by (¥, ¥, *++, ¥.). Let S,, S,_, and H be defined
as follows:

Sut AW, Yo, =, Y4 20,1 =1, coo,m, S y; = 1}
S’ﬂ-—l:{(yl’ Yoy 0y yn)lysg 0,7‘= 17 ""nyzyi = 1}

and
H: (Y, Yy o+, Un) | 2 Y = 2}

Let [f(x)|x = @, @, -+ -, 2,.,] denote the rth divided difference of f(x)
with arguments for x as x, ,, +++, #,,;. Define x_ =2 if 2 <0 and
x_=0if = 0.

THEOREM 1. The content of the frustum S, H expressed as a
ratio of the content of S,, C[S,], say, C[S,] = (n!)™, is given by

CIS. n H]
ClS.]

= [{(fB - z)—-}nlx = gy @y Ay 000, an]

where a, s defined by a, = 0.

THEOREM 2. The (n —_1)-content of the frustum S,_, N H expressed
as a ratio of C[S,_] = V'n/(n — 1)! is given by

ClS.. N H] _
ClS..] e

T — z)—}”—llw = Qyy Oy 000, an] .

An algorithm suitable for automatic computation of the divided
differences occurring in the above theorems is discussed.

The result of Theorem 1 has applications (see Ali, 1969) to the
statistical problem of the distribution of linear combination of ordered
observations arising from a population uniformly distributed over [0,
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1] while the result of Theorem 2 may find application in linear pro-
gramming and allocation theory.

G. Varsi {7] has considered the problem in Theorem 2 and by
means of a successive dissection technique, he arrives at an algorithm
suitable for automatic computation. It is shown that the formula of
the present paper leads to the algorithm proposed by Varsi.

The evaluation of the divided differences occurring in the above
theorems is discussed in §3. For numerical computation of these
divided differences, an algorithm suitable for automatic computation
is discussed in §4.

The particular choice of S, and S,_, in the above theorems does
not involve any loss of generality as shown below.

Consider in R™ an n-simplex T, whose vertices are V; for ¢ =1,
2,+++,n+ 1. Let the co-ordinates of V, referred to an n-dimen-
sional cartesian co-ordinate system with origin at V,,, be denoted by
Tiny Tiy o0y &,y) for ¢=1,2+++- n. Let o, denote the semispace
given by o,:{(@, @, *+-, )| 3 cw; < 2}

The frustum is defined by 7, N o, and let C[T, N ¢,] denote its
content.

Define the # X » matrix V in double suffix notation as V = (x;,;).
Let X' = (z, 2, +-+,2,) and Y’ = (y,, %, »+-, ¥.). Then it is easily
checked that the linear transformation from X to Y given by X =
V'Y transforms T, to the simplex S, as defined in Theorem 1 and
0, is transformed to H given by H: {(y,, -+, ¥.)| >, a:4; < #}. Therefore,
it follows that C[T, N o,] = ||V]|CI[S. N H], with 3i¢;x;; = a,.

Likewise, in R™ let T,_, denote an (»n — 1)-simplex. With origin
not on the (n — 1)-flat passing through T,_,, refer to the = vertices
V, for ¢ =1, ---, n with co-ordinates as before. Let o, be defined
as before. Proceeding in an analogous manner as in the former case
it is seen that

CIT.-.n o,] = [IVIC[S,. N H]

where a; is defined exactly as in the former case.

2. Divided difference. For convenience we state some standard
results on divided differences.

The »th divided difference of a function f(x) with arguments ¢ =
Xy, Xy, =+, x, is defined as:

» [F@w = a, o, oo ] = 3 @)/ @ — @)
= |4}/B]

where
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1 @, & -0 27 f=)
1 @ o« -« @™t f(wy)

A=
1 oz, 2t e art f(z,)
and
Ty X eee X
B 1 2z & e

" 22 ”
1 w, 2% .- 2z

when x,, %, «++, z, are distinct.
Finally, we state the following well-known result: (see Steffensen,
[6, p. 19]). For integral r,

0 if —n=<r<0

1 ifr=20
(Z’ag’vail---a;n for » >0
(g + 7+ oo £ 1, =7)

(2) [277 0 = o, @y, =+, 0,] =

where > denotes the summation over all the distinet products with
nonnegative integral exponents whose sum is 7.

For definitions of divided differences of f(x) with coincident argu-
ments the reader is referred to, for example, Hildebrand [3, p. 40],
Steffensen [6, p. 20] and Isaacson and Keller [4, p. 254].

3. Divided difference of {(x — z)_}". Consider the »th divided
difference of {(x — 2)_}" with possibly coincident arguments a,, @, +++, @,
for . We rule out the trivial case whenz =g, =¢q, = ++-+ = a, = 0.
Suppose «a,, a,, «++, a, are relabelled as b, +--,b,, (b; = b; for ¢ j)
where b, is repeated p, + 1 times p, =0,y = 1,2, --+, s, so that p, +
Py + oo+ p,+s=1r-+1. Taking appropriate limits of (1) (cf. Isaacson
and Keller, [4, p. 254]) we obtain

[{(ﬂ; - z)_}rix = Uy, Uy, * =, ar]

1 [ o
= 1—_[1 o [{(z — 2)_}z =0, ++, 0]
,,1110»![":‘ al,,]

where the divided difference on the right is given by (1).
Another alternative form of (3) is obtained by taking appropriate
limit of [A]/|B| in (1), for which we refer to Ali (1969). For example:
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[{(x - z)_}g]x =6¢C¢, d]

1 ¢ & {c—2?)_F 1 ¢ & ¢
{01 2 3{lc—2)) /|0 1 2¢ 3¢
100 2 6(c—2). 0 0 2 6c|’

1 d & {(d—2_p 1d d &

The following two special cases of coincident arguments are of
interest.
(i) Decompose a, a,, +--, a, into disjoint sets
Si:{a,]a, — 2 <0} and Sr:{a,ja, —z=0}.

Let the a, belonging to S, be renamed as «,, ,, - - -, &, while those
belonging to S} be renamed as B, B, **+, Bk S0 that J + K = r + 1.
If @, -+, &, are distinct (whether g, -+, Bx are distinct or not) we
have

[{(.’,U - z)—«fo = Qg Ay, =7, ar]

—S@-gUSe - a) - 8.

JFv

Likewise, if a,, a,, -+, a, are decomposed into S;:{a,|a, — 2 =< 0}
and Sj:{a,]a, — z > 0} and the a, belonging to S, are relabelled as
a,, - -+, «; while those belonging to S} are distinct, say G, <+, Bx then

[{(x - z)—-}rlw = gy Ay o0y CL,.]

=1-3 (8. -2 [T (8 —a) L6~ 8.

kesty

The last step follows from the fact that

[(x - z)rlx = O, Qyy v 0o, ar] =1.

4., Computation of divided differences of {(x —2)_}". Consider
the rth divided difference of {(x — z)_}" with arguments for z = a,, a,,
-+, a,. Let as before the set of a, satisfying a, — 2 < 0 be relabelled
as «,, -+, &, while the remaining a, satisfying a, — z = 0 be relabelled
as By, *+*, Bx, 8o that K + J = r + 1.
Define

Al/z = [{(x - z>~}l+y—lix = al; ) al; BI; R :8#] M
Further let
X,=a,—2z for Ax=1,.++,J

and
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Y, =B8.—2 for p=1,.-- K.
Then
Ay =[(X)" X=X, -+, X, Y, oo+, Y] .

Further by the use of (1) (temporarily assuming that «,, ..., @, B,
.-+, B, are distinct) the following recurrence relation is easily verified.

Y;IA(Z—U# - X),Az(/t-w

A;H:
! Y, - X,

It is readily checked from (1) with [f(z)|x = a] = f(a) that A, =1
for x=1,2,---,Jand 4,, =0 for . =1,2,--- K. Define 4, = 1.
The recurrence formula then gives 4, = (X))/(X, — Y,) as it should be.

The above recurrence formula sets up an algorithm to compute
successive values of A4,,. This algorithm was proposed by Varsi (from
geometrical considerations) and is suitable for automatic computation.
We note that

[{(x - z)_}rlx = Qoy Qyy =00, CL,.] = AJK .

The Algorithm of Varst.

Compute u; =a; — 2z for j =0,1,2, ---, 7. Label the w; which
are nonnegative as Y,, -+, Y and the remaining u; as X, -+, X, so
that K +J =r + 1.

The following notations are computational rather than mathema-
tical notations.

Step 1. Set A, =1, 4, =4, =+ =A,=0.
Step 2. For each value of h repeat step 3 for h =1,2, --- J.

Step 3.

YA, — XA,

A
g Yk_Xh

for k=1,2,.-., K.

(The expression on the right hand side is computed and stored in
location 4,.) Then the quantity in A, after the above set of opera-
tions is the value of [{(x — ?)_}"|¢ = a,, @y, -+ -, a,].

It is to be noted that the above algorithm does not result in any
indeterminacy for coincident values of a,, a,, +--, a, since Y, > X, for
alxn=1+--,J,and g =1, ... K.

5. Proof of the theorems. Consider the simplex L, defined by



318 MIR M. ALI

(4) Ln:{(mlﬁx%”'yxn)lzwiél’ a‘nd xfgoyj:is“"n}
and the semispace H defined by
(5) H: (%, 5, «++, ) @@ + oo+ + 0,2, < 2}

Temporarily assume that a, a,, ---, @, are distinct, where a, = 0.
This restriction will be removed later.
Let

_ClL.0nH] _ —nS
(6) F(z) = oLl n!L Lnanxl dx, .
It is easily shown that F(z) is a distribution function and that 0 <
Fiz) 1.

Let the characteristic function (Fourier-Stiltjes transform) of F'(z)
be #(t), (see Loeve [5, p. 184]) where ¢(¢) is defined by

6(t) = S+me"“dF(z) .
It is eagily seen that

¢(t) — Zlg eit(alx1+azw2+...+anxn).dxldxz e dx” .
L

n

Let 2, = Ly, for 1 =1, +++, .
Then we have

o(t) = mi|_emroorreso.dydy, - dy,

Sn

where S,:y, + 9%+ - + 9y, <1land 4, =20,¢1=1,2,--+, %,

Straightforward computation shows that for integral values of
TI’ /rEy . ') /r'ﬂ;

_ rlr eeer Inl
m+r+r4 oo + )

”!Ss Yiyse <« yordy,dy, « -+ dy,

so that by an easy computation we have

+o0
Uy = S_ Z'dF(z) = L’SS (@ + Gy + <+ + . Y.)"dY;
_ nlLT L
= mz QO = > = Oy

where > is the sum of distinct products of nonnegative exponents
whose sum is », with a, = 0.
Hence from (2) we obtain
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Ir L7
= (Iniflr)Y[d:lxn:r] ¢ (cf. Steffensen p. 23)
n + r)! &L 7=

where & is a number between the smallest and the largest of the
numbers a,, @, +++, a,. Hence |y, | < M'L", where M denotes the largest
value of the numbers |a,|, |a.], -, |@,|, and for some ¢ > 0,

5, LMl _ g

r=0

>y 2854
=t 7l

which is finite for all values of ¢. Therefore, the series >, (¢4.c/r!)
is absolutely convergent for all finite values of ¢ > 0. Hence from
a well-known theorem of Cramer [2], (for a proof see, for example,
Wilks [8, p. 125]) we have

o) = 3, L
(@@ =, @y e ]
:n!iw[xslx:aoy al’ “°’an]

S.

since [#°|x = a,, a,, +++, a,] = 0 for s < n, from (2).
Hence, we have

st = miaLy—3 3 L) | [ﬁ (@ — a»]
Lol

= nl(LY 3t 5, L)
o ]_;Io(av - aa) 5

JFEv

= n!(iLt)“”Zn, ettte, / ﬁ (a, — a;) .
= i
By the inversion formula (Loeve, [5, p. 186]) we obtain

—F( ) _2%5 (th)—"[z gtia,—2) / 1 (@, - aj)}zt.

J?‘:V

The above integral is analytic everywhere and the range of
integration may be changed to the contour I” consisting of the real
axis from — o« to — ¢, the small semicircle with radius ¢ with center
at the origin and the real axis from ¢ to .

Now by the use of
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1_ S 2medz = — (A )" Y (n — 1)!
27" Jr

we have

(g_)nz) = - aL™ 3 {(La, - 2L (@ — @)
4 J#y

and therefore integration over z yields

F(z) = i{((a, -2)) 11 (@ - a»} + K

S L

It is easily verified that: for z/L < min (a,, @, +++, a,), L, N H = &,
and hence F(z) = 0; since in this case

(= 2) -] -0

we immediately have K = 0, so that,

o= [((e- ).

Hence substituting L = 1, Theorem 1 is proved for the case when a,,
a,, +-+, a, are distinct.

The distance of the (n — 1) flat >, @, = L from the origin is
L/V'n. Consider the simplexes L,, (L + 6L), as defined in (3) and
the semispace H as in (4). The elementary volume C[(L + oL),] —
CIL,] divided by 6L/Vv'n by letting 6L — 0 gives the (n — 1)-dimen-
sional content of the portion of the simplex 3, x; = L, ; = 0 contained
in H. From (6) this volume is equal to V'n(d/dL)C[L, N H]

T =y, &y, ---,a,,].

=T ( )C(Ln)F(z) vt Lre)
=v'n ,dL([(Lw—z)ﬁ|x=ao,an---,an])-

A simple calculation shows that the last expression is equal to

Vi | g —
m[(m — )T = ay, Gy v 00, @]

Hence, setting L = 1, we finally obtain
0

ClS.-.N H] = m

[(% - z)—)nﬂllx =gy Gy o0ty (l,,]
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so that

C[S... N H]

C[S.-] =@ —2))7 e =a, t;, -+, 0] .

Hence, Theorem 2 is established when the a, are distinct.

The continuity theorem for the characteristic function along with
the definition of divided differences for k coincident argument show
that (with the definition of the divided difference for coincident argu-
ments) both Theorem 1 and Theorem 2 are also true for the case of
coincident arguments with expressions for divided differences as given
in §3. In particular, the algorithm discussed in §4, is not only
suitable for numerical computation, but also can be applied in all
cases since there is no indeterminacy for coincident arguments.

6. Asymptotic case. A sequence of real numbers (¢, Con, ** 7, Cuu)
will be said to obey Condition C if the following is satisfied:
Condition C:

n
lim max (¢;, — €,.)* | 2(cn — € =0,
n—oe 1S5S0 v=1

where €, = (Cip + Con + *+* + Cou)/Ns

THEOREM. If the sequence (Cin, Con, ***, Con) sSatisfies Condition C,

. L
lim [{(@ = 28 = €, +++, 6] = | edu

vier
where z = ¢, + [201 (cin — €)' [n(n + 1)}t

Before proving this general result we state the following result
obtained from statistical considerations by Ali [1]:

LEMMA.

a,] = ——1—_—_—
M Varn
where a, =0, and @, =(a, +a, + -+ + a,)/m + 1) and z =a,

3, (a; — @,)/(n + D(n + 2)]"*-t provided the sequence a, a,, -++, a,
satisfies Condition C.

im[{(x — 2)_}"|z =ay a,, ++- St e~ 2 dy,

Let us now consider [{(x — z2)_}" ' |z =a,, +--, a,]. Writec¢;, = a; —
a,t=1,+++,m; so that ¢, = 0. It is readily checked that if the
sequence (a,, *++, @,) obeys Condition C so does the sequence (¢, = 0,
Gy, o+, ¢,). Straightforward application of the above Lemma shows that
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!,bi_,xg [{(x - z)_}n—llx = Oy vy, a'n] = ﬁ S: 6”“2’2du

where @, = (@, + -+ + a,)/n, and z = @, + [3 (@; — @,)*/n(n + )]t
This proves the theorem.
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