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If E is an extra-special 2-group, it is known that Aut (E)l
Inn (E) is isomorphic to an orthogonal group. We prove that
this extension is nonsplit, except in small cases. As a con-
sequence, the nonvanishing of the second cohomology groups
of certain classical groups (defined over F2) on their standard
modules may be inferred. Also, a criterion for a subgroup
of these orthogonal groups to have a nonsplit extension over
the standard module is given.

1* Introduction. Let E be an extra-special 2-group of order

22n+1, n^l. That is, Ef = Z(E) and E/E' is elementary abelian.
Any extra-special group may be expressed as a central product of
dihedral groups D8 of order 8 and quaternion groups Q8 of order 8,
with the central subgroup of order 2 in each factor amalgamated.
The expression of E as such a central product is not unique in
general because D8 o D8 ~ Q8 o Q8. However, the number of quaternion
central factors is unique modulo 2 for any such expression (see [9]
or [12]).

The commutator quotient E/E' may be regarded as a vector
space over the field of two elements F2 equipped with a quadratic
form g, where q{xEr) = x2 e Er, for x e E (we identify E' with the
additive group of F2). The bilinear form b associated with q is defined
by b(xEr, yEr) = q{xEf)q{yE')q{xyEr) (in multiplicative notation, and,
in fact b(xE\ yE') — x~ιy~ιxy — [x, y] is the commutator of x and y.
Clearly, any automorphism of E induces an automorphism of Έ/Ef

which preserves this quadratic form. Hence, as Inn (E) consider
with the group of central automorphisms of E, Aut (E)/lnn (E) is
isomorphic with a subgroup of some orthogonal group 0±(2ny 2).

On the other hand, it is not difficult to see that of the full
orthogonal group may be lifted to automorphisms of E ([12], 13.9).
However, as we shall prove, there is usually no subgroup of Aut (E),
(Aut (EY) isomorphic to the relevant (simple) orthogonal group com-
plementing Inn (E). For the case \E\ ^ 29, the argument is surpris-
ingly easy, and gives a criterion for a subgroups of 0£(2w, 2) to have
a nonsplit extension over the standard 2%-dimensional module.

With similar considerations, one can see that, if E is an extra-
special 2-group of order 22n+\ Y = Z4, the group E<> Y (with a group
of order two amalgamated) has Z2 x Sp (2n, 2) as the outer automor-
phism group (the isomorphism D8oZ4 ~ Q8oZ4 is useful here; [12],
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p. 361).
We argue as follows. Since Y = Z(Eo Y)y Y is characteristic in

EoY. There is an automorphism a of Eo Y which inverts Y and
centralizes E. Thus, B, the centralizer of Y in Aut (Eo Y) has index
2 in Aut(jEΌΓ). Now Inn (EoY) has order \E/E'\ = 22\ Also,
Inn (J&O y)eikΓ, the group of central automorphisms, and \M\ =
1 Horn ((£Ό Γ), Γ) | = 22%+1. It follows that M = Inn (EoY) x <α>.
Note, BΠΛf = Inn(£O Y).

Since J5 preserves the alternating form EoY/Yχ EoY/Y-*E'
induced by commutation, J5/Inn (Eo Y) is isomorphic to a subgroup
of Sp (2n, 2). To get J?/Inn (EoY) ^ Sp (2n, 2), we must show that
every symplectic transformation on Eo Y/Y can be lifted to EoY.
But, a variation of the argument of [12] showing Out (E) is isomor-
phic to the full orthogonal group can easily be made. The relevant
fact is that every coset of Y in E contains involutions and elements
of order 4.

So, we have (B, a) = Aut (J3Ό Y). But clearly <JB, α>/Inn (Eo Y) s
Z2 x Sp (2n, 2) because (a} covers M/Inn (£o 7) < Out (Eo Y) and we
already know B is normal in Out (2?° Y).

By the well-known connection between equivalence classes of
group extensions and elements of the relevant second cohomology
group [13], our results on automorphism groups may be viewed as
statements about nonvanishing cohomology. Some related results are
presented as well (Theorems 2, 3, 4, 5). Unfortunately, our methods
do not indicate how big these nonzero cohomology groups are.

The corresponding question about extra-special p-groups leads to
split extensions. More precisely, if E is isomorphic to an extra-
special p-group of order p2n+\ n ^ 1, p an odd prime, then

(i) if E has exponent p, Out (E) = Sp (2n, p)H, where H is
cyclic of order p — 1 and H effects an outer automorphism of order
2 on Sp (2n, p).

(ii) If E has exponent p2, Out (E) = WSD, where W is a normal
extra-special group of order p2n~\ exponent p, S ~ Out (W)' =
Sp (2n - 2, p), and D ~ Zv_x.

In either case, Aut (E) is a split extension of Out (E) by Inn (E).
The splitting in (i) follows from an argument as in [12], p. 124.
Case (ii) is technically more complicated. The details are omitted.

The author thanks J. McLaughlin for many helpful conversations
and, particularly, for contributing Theorem 3. The author also thanks
J. G. Thompson for pointing out that the centralizer of an involution
in Con way's group 1, [4] is a nonsplit extension of an extra-special
group of order 29 by the simple orthogonal group Ω+(8, 2) ~ D4(2),
and for raising the general question which led to Theorem 1.
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2* Notation and assumed results* Most group-theoretic notation
used is fairly standard (see [9] or [12]). In particular, Σ»> r e sp. An

denotes the symmetric, resp. alternating group of degree n; Sp (2n, 2)
denotes the symplectic group of dimension 2n defined over the field
of 2 elements; 0+(2n, 2), resp. 0~(2n, 2), denotes the orthogonal group
of dimension 2n defined over the field of 2 elements stabilizing a
quadratic form of index n, resp. n — 1 (i.e., for which there is a
maximal isotropic subspace of dimension n, resp. n — 1); Ω+(2n, 2),
resp. Ω~(2n, 2) denotes the subgroup of index 2 in 0+(2w, 2),
resp. 0~(2w, 2), for which Dickson invariant is zero ([6], p. 64)-it is
the commutator subgroup of the orthogonal group, except for £?+(4, 2),
and excluding β+(4,2), it is generated by products of two orthogonal
transvections ([6], p. 36) (here, we are differing slightly from common
practice in which Ω±(2ny 2) is defined to be 0±(2ny 2)').

We assume the reader is familiar with elementary properties of
symplectic and orthogonal groups in characteristic 2 [6]. To get
subgroup structure, it is often useful to use the isomorphisms of
these groups with groups of Lie type [3]:

Ω+(2n, 2) ~ Dn{2) Ω~(2n, 2) ~ 2Dn(2)

Sp (2n, 2) ^ Bn{2) ~ Cn{2) , for n ^ 2 .

We collect some of our most often used results below.

PROPOSITION 0. ( i) For n^2, Ω±(2nf 2) is simple, except for
β+(4, 2) s SL(2, 2) x SL(2, 2).

(ii) For n ^ 3, Sp (2n, 2) is simple, and Sp (4, 2) ~ Σβ
(iii) For n ^ 2, Ω±{2n, 2) acts transitively on nonsίngular vectors

and on nonzero singular vectors.
(iv) For n ^ 3, the stabilizer in Ω±(2nf 2) of a nonsingular vector

is isomorphic to 0(2n — 1, 2) ~ Sp (2n — 2, 2).
(v) For n ;> 3, the stabilizer S in Ω±(2n, 2) of a nonzero singular

vector is a split extension of 02(S), elementary abelian of order 22n~2,
by S/02(S) s Ω±(2n - 2, 2).

We present notation used in Theorem 1. We set

En+1 = EnoFn,n = 1, 2, . . . where F%^DS

Vn = EJ(e} where <e> - K

and, in the obvious way, we regard

E1 a E2 d cz £/ n
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We call En an extra-special group of positive type, order 22w+1. The
other isomorphism type, the negative type, of extra-special group of
order 22n+1 is denoted by Tn. We have

Tn+1~T1oEn~TnoE19 f o r n ^ l .

We use the bar convention for image under En —> Vn and for other
homomorphic image when specified. We use * to denote preimages.
All our central products will have amalgamated central subgroup of
order 2.

Some general references for cohomology of groups are [1], [11],
[12], and [14].

3. Statement of results. We momentarily identify the two
groups Out (E) and 0ε(2n, 2).

Out (E) ~ 0ε(2n, 2) .

Also, we identify E/E' with Inn (E), thus making Inn (E) the standard
module for Out (E). Let G be a subgroup of Out (E). Consider (*),
the extension of G by Inn (E) induced by Aut (E):

1 > Inn (E) > Aut (E) > Out (E) > 1

(*) 1 >Inn(E) > B > G > 1 .

THEOREM 0. Let W be a subspace of Inn (E), \ W\ — 4, so that
the nontrivial elements of W consists of two singular vectors x, y
and one nonsingular vector z. Suppose G has a subgroup K satisfying

( a ) K fixes the vector z:
(b) K contains an involution t with x* = y,y* = x,z* — z:
(c ) K has no subgroup of index 2.

Then, (*) is a nonsplit extension.

THEOREM 1. Let E be an extra-special group of order 22n+1, n7>l.
We identify Out (E) with the relevant orthogonal group 0ε(2n, 2),
ε — ± . Consider the exact sequences of groups

(*) 1 > Inn (E) > Aut (E) -^-> 0ε(2n, 2) > 1 ,

1 > Inn (E) > A(E) -^-> Ωε(2n, 2) > 1 ,

where A(E) is the preimage of Ωε(2n, 2) in Aut (E) under π.
(a) If E is of positive type, the sequences of (*) are nonsplit
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when n ^ 3, split when n — 1, 2.
(b) If E is of negative type, the sequences of (*) are nonsplit

when n ^ 3, split when n = 1,2.

COROLLARY 1. The second cohomology groups H2(0±(2nf 2), F)
and H2(Ω±(2n9 2), V) are nonzero for n ^ 3, where V is the usual
2n-dimensional space on which 0±(2n, 2) acts. Also, £Γ2(0+(4, 2), F) = 0
owwi H2(Ω+(ί, 2), F ) = 0.

COROLLARY 2. Lei i? δe an extra-special group of order 22n+1

and let Y be cyclic of order 4. Then Out ( £ o Γ ) s Z , x Sp(2n, 2).
extensions

1 > Inn (Eo Y) > Aut (#o 7 ) Λ z 2 χ Sp (2w, 2) > 1 ,

1 > Inn (£/o Γ) > Λ(JS?o Γ) «^-> Sp (2Λ, 2) > 1 ,

where A(Eo Y) is the centralizer in Aut (£Ό Y) of Y, are nonsplit
for n ^ 3. Consequently, the second cohomology group Jϊ2(Sp (2n, 2), F)
is nonzero for n ^ 3, where V is the standard 2n-dimensional module
for Sp (2n, 2).

THEOREM 2.

iΓ(0-(4, 2), V) = 0

and

iϊ2(β-(4, 2), F) = 0 ,

where V is the usual ^-dimensional module on which 0~(4, 2) acts.

THEOREM 3 (J. McLaughlin) iP(Sp(4, 2)yV) Φ 0, where Vis the
usual ^dimensional module. More precisely, the cup-product

iP(Sp (4, 2), Zύ x iP(Sp (4, 2), V) > fT2(Sp (4, 2), V)

is not the zero pairing.

THEOREM 4. ίP(Sp (4, 2)', F) = 0, F ί&e standard module.

THEOREM 5. ( a ) Let E be an extra-special group of order
22n+\ n^l, type s = ± . There is a group H having the properties

02(H) = E, Z(H) = Z(02(H))

H/02(H) ~ 0ε(2n, 2), H/Z(H) = Aut (E)

and H has a faithful, ordinary, irreducible complex representation of
degree 2n.
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(b) Let E be as above and let Y = Z4. There is a group Ho

having the properties

02(H0) s Eo γ9 Z(H0) = Z(E)

H0/02(H0) s Sp (2n, 2), H0/Z(H0) ~ A(Eo Y)

and Ho has two faithful, ordinary irreducible complex representations
of degree 2n. These are interchanged by the action of Aut (Eo Y) on
A(E° Y) and by complex conjugation.

(c) Let F be a splitting field for E or £ΌZ4 (e.g. F = Q, the
rationals, will do for En, and Q(λ/ — 1) will do for Tn or EoZ4).

(i) If W = H or Ho, then the 2n-dimensional representation,
when restricted to W, may be written in F.

(ii) If Wo = H, H'E, Ho or HόE then every faithful irreducible
character of χ of Wo has the form χ — ξη, where E is contained in
the kernel of ξ and rj is the character of a 2n-dimensional representa-
tion from (a) if Wo = H or H'E, or from (b) if Wo = Ho or H^E.

COROLLARY 3. The exact sequences of Corollary 2 are nonsplit
for n — 2.

Note that Corollary 3 implies the first assertion of Theorem 3.

4* Proof of Theorem 0, and for n ^ 4, proof of Theorem 1 (a),
(b), and Corollary 1. Assume the hypotheses of Theorem 0. Let W*
be the preimage of W in E. Then W* = D8. Assume (*) is split.
Then, there is a complement to Inn (E) in B, which we may as well
identify with G. Now, t e G effects an outer automorphism of order
2 on TF*. The structure of Aut(TΓ*) implies that t inverts the
maximal cyclic subgroup U of W*. But K acts on U, and since K
has no subgroup of index 2, K must centralize U. This gives a
contradiction, since teK. Therefore, the complement does not exist,
and the Theorem is proven.

We can now get the assertions of Theorem 1 (a), (b) and Corollary
1, for n ^ 4. Let G = Out (E) or Out (E)\ Choose any W as in the
Theorem and let K be the stabilizer of the nonsingular vector in
Out (E)'; we have K s 0(2^ - 1, 2) ~ Sp (2n - 2, 2). Since n ^ 4, K
is simple. One can easily find an involution t with the required
properties. Theorem 0 now implies the assertions of Theorem 1, and
Corollary 1 as well.

If n — 3, the arguments are different and will be given in §§5
and 13. Here K = Σ6> the symmetric group. The trouble is, since
\K: K'\ = 2, we are not immediately led to a contradiction, for t may
not lie in Kr.
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EXAMPLE. It may be easy to check the hypotheses of the Theorem
in some cases. Let G be Conway's group 1. Let A be the Leech
lattice, and set V = Λ/2Λ. The quadratic form on A induces an F2~
valued quadratic form on V which is nondegenerate. Also, G preserves
the form on F. Consider a triangle in A of type 322, We take for
W the union of 0 e V and the image in V of the edges of this triangle.
Let i£* be the stabilizer in .0 of the subgroup of A generated by
the edge of type 3; K* ~ .3 x Z(Λ). Let K be the image of K* in
G. It is not difficult to find an involution ί* of .0 which switches
the two edges of type 2 in our triangle. Finally, set t equal to the
image of t* in G. Since K is simple, all parts of the hypothesis of
our Theorem are satisfied. It follows that there is a nonsplit exten-
sion of G by V (we have embedded in G in Out (E), E extra special
of order 225, and identified V with E/Er to get this). Of course, we
also get H2(.l, Λ/2Λ) Φ 0.

5* Proof of Theorem 1 (b), Corollary 1, the case n = 3.

It suffices to show that

1 > Inn (Γg) > Aut (Γ3)' > Out (Γ3)' > 1

is a nonsplit extension. In this case, Out(T3)' = β"(6, 2) ~ Z74(2).

We assume the extension splits. The considerations of §4 allow
us to assume the following: there is a coset x(e) of <e> = T3' with
x2 — e and xd = xe for deK — K\ where K = X 6 is the stabilizer of
#<e> in the complement. We may write T3 — ^ o F, where x e F = £72

There is an automorphism α: of order 3 which centralizes F and acts
nontrivially on T1 ~ Q8. Let Q be the subgroup of Kr which is con-
gruent to {ay modulo Inn (T3). Any subgroup of order 3 in K ~ Σβ
is centralized by some d e K\K\ Thus <Q, d> = Z6 acts on Γj. = [T3, Q].
But Aut (TΊ) s Σ 4 implies that d centralizes Γx. So, choose # e Tx,
|2/| = 4. Then yd = y, whence (xy)d = xey = (ίC2/)e. But xy = i/a;
implies x?/ is an involution. The stabilizer of the singular vector
xy(e} in the complement is isomorphic to a perfect group which is
an extension of 42"~(4, 2) ~ A5 by an elementary abelian group of order
24. Since this perfect group must centralize every element of the coset
%y(e}, we have a contradiction to (xy)d — xye. Thus, the complement
does not exist in the case n — 3 either.

6. Proof of Theorem 2.

LEMMA. Let V be the usual ^-dimensional F2-space on which
fl-(4, 2) acts.
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Then V is a protective and injective F2β-*(4, 2)-module. Con-
sequently, #*"(£-(4, 2), V) = 0 for all i ^ 1.

Proof. We claim that V is absolutely irreducible. Let k be a
field of characteristic 2 containing the |(? |th roots of unity, where
G = ί2~(4, 2). It is well-known that kG has four irreducible modules
of dimensions 1, 2, 2, and 4. It suffices to show that k (x) F has no
1-or 2-dimensional constituent. If there were a 1-dimensional con-
stituent, an element of order 5 in G would have 1 as an eigenvalue
on k (x) F, hence also on F. This is impossible as | V\ = 16. Assume
no trivial constituent occurs and suppose the 2-dimensional modules
are the constituents. But on each of these, an element of order 3
in G has no fixed points, although it stabilizes both singular and
nonsingular vectors of F, contradiction.

Thus, V is absolutely irreducible. Since k (x) V has dimension 4,
the full 2-part of the order of G, k (x) V lies in a block of defect 0
(see [2], especially (6A)), hence is protective and injective for kG.
As V is an i^G-summand of k (x) V, V is protective and injective.

Since cohomology vanishes on injectives in positive degree (see
[11] or [14]), the last assertion is immediate. The lemma is proven.

Now consider an extension

( + )1 > V > E > 0-(4, 2) > 1

of 0~~(4, 2) = Σ 5 by its usual 4-dimensional F2-module. By the lemma,
(+) restricted to 0~(4, 2) is split because ίP(β~(4, 2), F) = 0. Fur-
thermore, H\Ω~(&, 2), V) — 0 implies that all subgroups of E isomor-
phic to £?~(4, 2) are conjugate.

We can now show IP(0~(4, 2), V) = 0 by applying the Frattini-
like argument suggested in [12], page 124. Namely, let D denote a
subgroup of E isomorphic to β~(4, 2). Since all such D are conjugate,
E = VNE{D). Now, NE{D) Π 7 = l because β~(4, 2) fixes no vector
in F*. Thus NE{D) complements V in J^. Consequently,

iP((T(4, 2), F) - 0 .

7. Proof of Theorem 1, αmϊ Corollary 1, ίΛe case w = 1, 2.
Consider part (a). For n = 1 the result holds, as Aut (D8) = D8.
For ^ = 2, Out (2£2) = 0+(4, 2) is isomorphic to a wreath product
Σs ? ̂ 2 Now consider any extension

1 > I n n (E2) > B > 0+(4, 2) > 1

with the same action as Out (E2) on Inn (E2). Let P be a Sylow 3-
subgroup of B; Pa 02,3(JB). By the Frattini argument, B — Inn (E2)
NB(P). But P acting faithfully on Inn (E2) may not have a nontrivial
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fixed point. Thus, Inn (E2) n NB(P) = CInn(*a>(P) = 1. Thus, NB{P)
complements Inn (E2) in B, whence the extension is split. A similar
argument shows that any extension of 42+(4, 2) by Inn (E2) is split.

Next, consider part (b). For n = 1 the result holds, as Aut (Q8) ^
Σ 4 and Σ 3 c Σ 4 complements the normal four-group Inn (Q8). For
n = 2, 0""(4, 2) = Σ 5 and ί2~(4, 2) ^ Aδ. The splitting in this case
follows from Theorem 2.

The last assertion of Corollary 1 follows from the above.

8* Proof of Corollary 2. To prove Corollary 2, we choose n ^ 3
and work for a contradiction under the assumption that

1 > Inn (Eo Y) > A(Eo Y) > Sp (2n, 2) > 1

is split. We claim that D, the subgroup of A(E<> Y) leaving invariant
the subgroup Ed Eo Y is isomorphic to Aut (E). Namely, any auto-
morphism of Aut (E) can be extended to one of EoY by letting it
act trivially on Y. Furthermore, every element in D is of this form,
for if a, βeD induce the same automorphism on E, then aβ"1 is
trivial on E and on Y, hence aβ~ι = 1. Clearly, jDz)Inn (£Ό Y),
which may be regarded as Inn (E) under our identification. Our
hypothesis implies that the extension of D by Inn (Eo Y) is split.
But this contradicts Theorem 1. The corollary is proven.

9. Proof of Theorem 3. Let k be a perfect field of characteristic
2, V a finite dimensional vector space over k, and 6 a nonsingular
alternating form V x V—*k. Let G be the symplectic group associated
with b. In this section, we write functions and group actions on the
left.

Recall that a derivation (or, a 1-cocycle) from G to V is a func-
tion d: G —» V satisfying d(xy) — d(x) + xd(y), all x, y eG. If q is a
quadratic form on V whose associated bilinear form is 6 there is a
derivation d: G—+ V, where d(t) is defined by the condition

b(t(v), d(t)) = Vq{v) + q(t(v)) , for all i ; e 7 .

Note that, for fixed t, the right side is a linear functional in v. Since
b is nonsingular, it identifies V with its dual, whence a unique vector
cZ(£) is determined by the above condition.

We show that this d is a derivation. Let s,teG. By definition
of d} we have

b(st(v), d(st)) = V q ( v ) + q(st(v)) , a l l v e V

b(s(v), d(s)) = V q(v) + q(s(v)) , a l l v e V

b(t(v), d(t)) = 1 / g ( v ) + ? ( ί ( v ) ) , a l l veV.
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In the second equation, replace the variable v by t(v), and in the third
expression, replace b(t(v), d(t)) by b(st(v), sd(t)). Adding the three new-
equations, we get b(st(v), d(st) + d(s) + sd(t)) — 0 all veV, whence
d(st) + d(s) + sd(t) = 0, as required. We shall see that in most cases,
d is not a coboundary.

For x € F, x Φ 0, let tx be the transvection at x, i.e.,

tx(v) = v + 6(v, a?)a? .

Then,

Φ) + «(*.(*>)) = Φ + ί.(v)) + b(v, tx{v))

= g(6(v, a?)a?) + δ(v, v) + 6(u, b(v, x)x)

= δ(v, a>)2(l + ?(a?)) ,

whence

β) = V1 + q(x) x .

If d were a coboundary, there would be a fixed me V with
= ί(m) + m, all ί e G. Assume \k\ > 2 or dim (F) ^ 4 . Suppose

0 Φ y e F, gθ) = 0. From above, y = d(ίy) = ^(m) + m = 6(m, y)y,
whence b(m, y) = 1, for all such #. Now, suppose g has isotropic sub-
spaces of dimension 1/2 dim ( F ) . If |fc| > 2, choose c e k, c Φ 0, 1, and
choose y Φ 0 with g(y) = 0. Then g(c]/) = 0, but 6(m, cy) = eb(mf y) =
c Φ 1, contradiction. If dim (F) ^ 4, there are singular vectors x, y
with q(x) = q(y) = g(a? + 7/) = 0. Then δ(m, a? + y) = b(m, x) + b{m, y) =
1 + 1 = 0 ̂  1, contradiction. Thus, we may assume by changing q
if necessary that d is not a coboundary if |fc| > 2 or dim (F) >̂ 4.

Now, take k = F2y V of dimension 4. Since G = Σ 6 , we have a
nontrivial homomorphism h: G —> F 2 . Define f:Gx G —* F by

/(s, t) = h(t)d{s);s,teG.

We show that this 2-chain is a 2-cocycle. We calculate (in charac-
teristic 2)

/(*, t) + /(«ί, r) + sf(t, r) + f(β, tr)

= h(t)d(s) + h(r)d(st) + h(r)sd(t) + h(tr)d(s)

= h(t)d(s) + h(r){d(st) + sd(t)} + {h(t) + h{r)}d{s)

= h(t){d(s) + d(s)} + h(r){d(st) + sd(t) + d(s)} = 0 ,

so that / is a 2-cocycle.
We want to show that / is not a 2-coboundary, from which

ίP(Sp (4, 2), F) Φ 0 will follow. Suppose there were a g: G —> F so
that /(*, t) = g(st) + sg(t) + g(s). Note that 0 = h(l) d(l) - /(1,1) =
g(l) + g(ΐ) + ff(l) implies g(l) = 0.
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Let 0 Φ xeV have q(x) = 0. Then d(tx) = x from above. Also,
tx $ G', so h(tx) = 1. So,

= (tx + l)flr(ίx) - δ(α?, g{tx))x .

Thus, 6(a?, flr(ίa.)) = 1 and g(tx) £ (x}x (where1 denotes annihilator with
respect to 6).

Now, take q to be a quadratic form for which there are isotropic
subspaces of dimension 2. Let x9 y be distinct nonzero singular vectors
with b(x, y) — 0. Then tx and ty commute. Now

d(t.) = h{ty)d{tx) = g(txty) + txg(ty) + g(tx) .

We then get

d(tx) + txg{ty) + g(tx) = g(txty) = flr(i,i,)

or

Λ(ί.) + % + I)ί7(ί,) = d{ty) + (ί̂

or

(1 + b(x, g(ty))x - (1 + b(y, g(tx))y .

Therefore, b(y9 g(tx)) = 1, since x and ?/ are linearly independent.
Let W be the span of x and g(tx) in F Then T71S<^>1 But

xί W1 since flr(ίβ) e W arid flr(ίβ) ί <a?>1. It follows easily that W is
nonsingular under 6. Since V has isotropic subspaces of dimension 2,
there is a nonzero singular vector ye W1. But then b(y, g(tx)) = 0
contradicts the last paragraph.

Therefore, / is not a 2-coboundary, as required. McLaughlin
remarks that the cocycle d appeared in a different form in Dickson's
work [7]. Now iΓ(Sp (4, 2), V) Φ 0 and iΓ(Sp (4, 2), Z2) s Horn (Sp (4, 2),
Z2) ~ Z2. Our definition of /e^ 2 (Sp(4, 2), V) as /(s, t) = h(t)d(s) is
a cup-product construction [1], based on the (obvious) pairing Z2(x) V—> V.
Note that the cocycle / restricted to G' is identically zero.

10* Proof of Theorem 4. We consider an arbitrary extension

> V > B > Sp (4, 2)' > 1

of Sp (4, 2)' ~ A6 by V, the usual 4-dimensional F2-vector space on
which Sp (4, 2) acts. We will show {Φ) is split.

We know by Theorem 2, that {Φ) restricted to i2~(4, 2) is split.
Let D be a subgroup of E mapping isomorphically onto fl"(4, 2) c



414 ROBERT L. GRIESS, JR.

Sp (4, 2)'. Since V is F2 D-projecί ive and injective. (By the Lemma
in §6), V is likewise for F2D1, D1 any subgroup of D. If we take
IAI = 2, and remark that all involutions of Sp (4, 2)' are conjugate,
we get that (=£) is split when restricted to any subgroup of order 2
in Sp (4, 2)'.

Let I be a maximal isotropic subspace of V, \ I\ — 4. The stabilizer
Kx of I in Sp (4, 2)' is isomorphic to Σ* Let K be the preimage of
Kx in B, and let R = 02(iΓ). Note that a Sylow 3-subgroup P of K
acts fixed point freely on R.

We claim R/I is elementary abelian. Now, P acts fixed point
freely on R/I also. Since V/I is central in R/I, commutation is
biadditive. Since \R/V\ = 22, we have \{R/I)\ g 2. But since (R/iy
is characteristic in R/I and P acts fixed point freely, (R/I)' = 1 follows.
Thus, i?/I is abelian. As pointed out above, every coset of V/I in
R/I contains involutions. Thus, R/I is elementary abelian.

We have P c 02t8(K) and \K: 02>3(K)\ = 2. By the Frattini argu-
ment, we choose a 2-element te NK(P), teO2,3(K). By the structure
of Kl91

2 e V, so f G CF(P) = 1. Thus <P, t) = Σβ
Since V/I is an irreducible <P, £>-module of dimension 2, the 2-part

of |<P, t>|, V/I is protective and injective over F2(P,t) ([2], (6A)).
So take Wa 02(K) so that W/I is a F2<P, ί>-complement to V/I.

Since J is central in W, we may repeat the above arguments to
get W elementary abelian and we may obtain an F2(P, t) complement
T to I in W. Clearly <P, t, T> intersects F trivially and covers K/V.

Thus, (9 )̂ splits when restricted to Kx. Since |Sp (4, 2)': Kx\ is
odd, Gaschiitz' Theorem implies that (φ) is split. The theorem is
proven.

l l Proof of Theorem 5. (a) Let M — C[E] be the complex group
algebra of E. It is well-known ([9], 5.5.4) that E has precisely one
faithful irreducible representation and it has dimension 2n. Let N
be the simple constituent of M corresponding to this representation.
Now, Aut (E) permutes the irreducible representations of E, but N
must be left invariant because it is the only faithful one. Thus,
Aut (E) operates as automorphisms on the matrix algebra N. By the
Skolem-Nother Theorem, every automorphism of N is inner. ([13],
p. 24).

For αeAut(JB'), let m(a)eN induce the same automorphism of
N as a. We have m(a)m(β) = m(aβ)c(a, β), for α, β e Aut (E), where
c(oc} β) is a scalar matrix. Thus

a 1 > m{a)

gives a projective representation of Aut (E). Conjugation by elements
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of EdM on N has the same effect as the action of the m(a),ae
Inn(E). Since the representation E—>N is irreducible and faithful,
and not projectively equivalent to an ordinary representation of E/E'9
av-*m{a) is not equivalent to an ordinary representation of Aut (E).

By Schur ([15] (1907) or [12], 24.3), there is a covering group
K of Aut(E), a subgroup C^Z(K) Π Kf, and an isomorphism φ so
that the diagram below commutes

K/C Φ >GL(2n,C)

Aut (E) m-—> PGL(2n, C) .

We shall show that, for n ^ 5, C = 1 and that K is our desired group
H. Following this, the case % ^ 4 will be treated.

Let G = Ant(E) and suppose n ^ 5. Set A = Z(K). Then,
A g Z ' and K/A ~ G. Let R = Inn (E) <\ G, and let R be the exten-
sion of R induced by K. Set B = A n -B' and let L = K/B. Now,
0ε(2?ι, 2) has trivial multiplier ([17] and preliminary result (11) of
[10]). Also, Hι(0ε(2n, 2), F) = 0 for n ^ 4 and V the standard module
[16]. Since V is self dual, this last fact implies that Έxt(V,Z2) ~
Ext (Z2, F) = ίί1(0e(2w, 2), F) = 0. All this, together with the irre-
ducibility of G/R on R, implies that (A/B) Π L' = 1. Since A s if',
we get A — B. Since the multiplier of an elementary abelian group
is elementary abelian [12], B is elementary. We wish to show
\B\ - 2.

Suppose J5i is a hyperplane of J5. Then the squaring map from
R/Bλ into B/B1 ~ Z2 induces a quadratic form qx on R/B ~ R which
is preserved by G/R. Let Bx and B2 be distinct hyperplanes and qx

and g2 the associated forms. We claim that qι and q2 are "distinct",
i.e., that the following does not happen: for every xeE9qι(x) — 1 if
and only if q2(x) = 1. Namely, if the latter does hold, then the
squares in R generate a proper subgroup of B, contradiction. This
shows that if 0ε(2n, 2) preserves a unique quadratic form on F, then
\B\^2 follows.

Suppose q and q' are quadratic forms with the same associated
bilinear form b. Then, the groups which preserve q and qf are
subgroups of the symplectic group associated with 6, and they
are equal if and only if q = qf (as is well-known). So, to get |J5| <£ 2,
it suffices to show that 0£(2w, 2) preserves a unique bilinear form,
i.e., that dimF2Ή.om0e(2n>2)(V(g) F, F2) — 1. But since F is a self
dual module, we have (dropping subscripts), Horn (F(g) F, F2) ~
Horn (F, Horn (F, F2)) — Horn (F, F), and the latter object has dimen-
sion 1, because (for n ^ 2) F is an absolutely irreducible module (as
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is easily proven, say, by induction on n; or see [18]).
We now have \B\ ^ 2 . Since Z(K) Φ 1, this forces C = 1 and

shows that the covering group K = K(n, ε) has the properties required
of if, for n ^ 5, ε = ± . We turn to the case n ^ 4. Fix Ko = if(m, <5),
for m ^ 5, and some sign δ. Choose a nonsingular subspace W of
it! = Inn (E), so that the annihilator in R of PΓ has order 22n, type
ε. Let W be the preimage of W in iΓ0; TΓ is an extra-special group
of type eδ. Let J be the centralizer of W in Ko. We have / f! TF =
Z(Λ) = Z(W),JW = R, and/induces the identity on W and the full
orthogonal group on J f) R/J f) Z(R). This suffices to show that we
may take / to be our H for this pair n, ε.

For n ^ 5, it is clear that K(n, ε) has an irreducible, faithful
complex representation of degree 2*. For n ^ 4, we argue using the
notation of the last paragraph. The representation of degree 2m,
when restricted to W, is the direct sum of 2n equivalent faithful
irreducible representations of W, each of dimension 2m~n. Thus,
J — CKQ(W) acts in 2n dimensions, and this action is easily seen to be
faithful and irreducible.

(b) Every irreducible representation of £Ό 7 may be expressed
as a product of such of E and of Y. ([9], 3.7.1). Now, E has pre-
cisely one irreducible faithful representation of dimension 2n, and Y
has two such, each of degree 1. Thus £Ό Y has precisely two faithful
irreducible representations, each of dimension 2\

By imitating the argument of part (a), A(Eo Y) permutes the
irreducible constituents of C[Eo Y], hence permutes the two constit-
uents Nx, N2 corresponding to faithful representations. But since
A(E° Y) centralizes Y, it leaves each JV* invariant. As in (a), this
gives a projective representation of A(Eo Y) of the required degree
and the group Ho is constructed in a similar way (we need the fact
that Sp (2n, 2) has trivial multiplier for n ^ 4 [17]).

It is clear from the construction that these two representations
are related by the action of Aut(£Ό 7) on the normal subgroup
A(Eo Y). Also, complex conjugation interchanges these two represen-
tations, since each restricted to E has rational trace.

(c) Our argument may be refined as follows. Let F be a splitting
field for X = # ( r e s p . E<>Y). We may replace C[X] by F[X] to
get a projective representation of W = Aut (X) (resp. A(X)) over F,
i.e., our map m can be made to satisfy m{a)m{β) — c(a, β)m{aβ), where
the m( ) are matrices with entries in F and c(a, β) e F. Thus, the
image m(W) in PGL(2n, C) actually lies in PGL(2n, F) QPGL(2n, Q.
Then, from the diagram, φ(W) g C x GL(2n, F), where Cx is identified
with the scalar matrices.

Now, we have φ{W) = Φ(W)' £ (Cx. GL{2n, F))' = SL(2n, F). Thus,
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on 2w-dimensional linear representation for W may be written in the
field F.

Now, let Wo be H or HΈ. If ψ denotes the character of the
unique faithful representation of E, then, evidently, if χ is irreducible
character of Wo for which χ\E is faithful, χ\E is a multiple of ψ.
For such χ, a theorem of Clifford states that χ = £37, where ζ, 57 are
protective characters of Wo and ϋ/gker (£), 77(1) — ̂ (1). In fact, the
proof of (a) and the proof in [5] (page 351) shows that we may take
ζ and η to be characters of ordinary representations, and we may
even take rj to be the character of the 2*-dimensional representation
we have constructed. If we let ξ be a variable running over the
irreducible characters of Wo/E, we can see that all the ξη are distinct
and form the set of faithful irreducible characters of Wo by using
the fact that \W0\ is the sum of the squares of the degrees of the
irreducible characters of WQ.

Similar arguments prove the statement for Wo = HQ or HΌE.
There are two choices for rj to consider in this case, however.

12* Proof of Corollary 3. It suffices to prove the second exten-
sion does not split. Suppose it does. Let G c A{E° Y)9 G ~ Sp (4, 2) s
Σβ By Theorem 5(b), there is a group HQ and an exact sequence

1 >Z2 >H0-ϊ-+A(EoY) , 1 .

Let Go be the preimage of G in Ho. Since Ho has a faithful complex
representation of degree 4, so does Go.

Since Σ 6 has no faithful ordinary irreducible representations of
degree less than 5 [5], Go is isomorphic to a covering group of Σ 6

(see [12], 24.3).

We identify JSΌ Y with 02(H0). Denote images modulo Γby bars.
Note that Inn (E<> Y) inherits from £ o 7 a n alternating form stabilized
by G. Let J be a subgroup of E° Y containing Y isomorphic to
Z2 x Z2 x Zk. Then 7 is a maximal isotropic subspace of Inn(J5Ό Y)
and | 7 | — 4. The stabilizer K in G of 7 is isomorphic to Σ 4 x Z2.
Let Ko be the preimage in Go of K. Since the Sylow 2-subgroups of
Go are quaternion of order 16, we have Kό ~ SL (2,3). Note,

Now, Ko acts on / while centralizing Y. Since Ko induces SL(2, 2)
on 7,02(K0) stabilizes the chain / D Γ D I . We claim that 02(K0)
stabilizes the chain J z ) £ " z ) l . First, notice that every coset of Y
in 7 contains an element of order 2. Now, let we 02(iQ, ue J, and
write u — vy, where y e Y and v2 = 1. Since / is abelian, and 02(K0)
centralizes Y9 we have [u, w] — [vy, w] — [v, w]y[y, w] = [v, w] and
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[u9 w]2 = [v, w]2 = [v2, w] = 1. Thus, [/, 02(KQ)] is contained in E\
the subgroup of order 2 of Y. This proves the claim. Commutation
induces a map 02(iΓ0) —> Horn (// Y, E'), and the latter group has order
4. So, the kernel R of this map has order at least 4. Note that
ϋ Π Ig;02(JQ ΓΊ / = Ef. Let Rx be an abelian subgroup of R of order
at least 4. Then, (Rl9 I) is an abelian group of order

IΛxΓI JΓ|-Bil|J| ^ -L.4 16 = 25.

Since i?/i? Π E' is elementary abelian, (Ru I)/Ef is elementary abelian
of order at least 24, whence <JB1, /> contains a subgroup L which is
elementary abelian of order 24.

We claim that in our representation of degree 4, every element
of Ho acts with determinant 1. Since Go covers Ho/H{ = Z2, it suffices
to prove the statement for elements of Go. Suppose there are elements
of Go acting with determinant —1. Since G contains an elementary
abelian group of order 8, the Sylow 2-subgroups of Go are not
(generalized) quaternion. But, as those of Go are, there is an involu-
tion u e GQ\GQ. If the matrix representing u is diagonalized, it has
± l's on the diagonal. Since u acts with determinant —1, these
eigenvalues are

{1,-1,-1,-1} or {-1,1,1,1}.

Now (u)πeG has centralizer ((u)π) x M, M c G ' , M~ Σ 4 . Let Mlf

resp. Λf2, denote the preimage in Go of M, resp. M\ Since (u)π
centralizes M, u induces a central automorphism of M19 but centralizes
M2 = SL(2, 3).

Since M2 commutes with u, M2 preserves the eigenspaces of u.
This forces M2 to have a 1-dίmensional constituent, whence M[ acts
trivially on this constituent. However, Er c M2 and Ef acts as the
scalar —1 in this 4-dimensional representation, contradiction.

We have just shown that every element of Ho acts with deter-
minant 1. The same must hold for L c Ho. But it is impossible for
an elementary abelian group of order 24 to act faithfully with deter-
minant 1 in 4 dimensions.

This final contradiction proves that the complement G does not
exist. The corollary is established.

13* Proof of Theorem 1 (a), the case n = 3. Let H be the group
of Theorem 5(a), associated with E — Ez. Set Hγ — H'. We identify
E with 02(fli) = 02(H). We have Ef = Z(HJ = Z(H), HJE ~ β+(6, 2) ~
Λ, HJE' ~ A(E).

Suppose that
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(*) E\Ef > HJE' HJE-

is the split extension. Take H2 c Hλ so that Hλ — EH2 and E Π H2 —
E'. Then H2 = Z2 x A8 or Ά8, the covering group of A8.

Let a(t) e H2 be a representative for £ e H2jE
r. We assume α(l) = 1.

In the case H2^A8x Z2, we take all the a(t) to lie in Ή.[. Every
g eHι may be expressed uniquely as a product g — xa(t), xe E, a(t) e H2.
If #2 = 1, exactly one of the possibilities below must hold:

( i )

( ϋ )
(iii)

( iv)

( v )

(v i )

(vii)

(viii)

( ix)

X -= 1

a ? = 1

x = e

x — e

x = 2, x

x\ = 2,x

X

x = 4

X — 4

a(t)
a(t)\

a(t)

α(ί)|

£<e>

-J

= 2

p

X*

X1

xι

X1

~ X

— X

— xe

— X

= xe

a(t) = 1

α(ί) | = 2

α(ί)2 - β

α(ί)2 = e

α(ί) | = 2

For any group G that follows, let s(G) = |{^/eGίi/2 = 1}|. We
count s(ί?i) in two different ways. First, we analyze the contribution
types (i) through (ix) to siHJ. In particular, we show that the
contribution of each of types (i) and (iii) is 1 and that of each other
type is a multiple of 5. We point out that for all xe E, and all
α(ί) e H2, we have that CH2(xa(t)) s NH2((a(t), e», and in case H2 ~ A8 x
Z2, we have NHi«a(t), β» - CH2(α(ί)).

Assume iϊ 2 = A8 x Z2; then H2 = {a(t)\te H2/Z(H2)}. For types
(i) and (iii), we get one # each. For each of (ii) and (iv), we get as
many g as involutions in A8; the total is 2{3 5 7 + 2 3 5 7} For (v),
(vi), and (vii), note that there are 2 35 involutions xeE\(e). Let
m be the number of a(t) e H2 centralizing x with | a(t) \ = 2. There
are no g of type (vii) since H[ ~ A8. Thus, the contribution of
types (v), (vi) and (vii) is 70 {1 + m}. No g of type (viii) occurs
since Hi ~ A8. For (ix), note that there are 2 28 elements of order
4 in E. The involutions a(t) e H2 inverting x lie in D, the subgroup
of ΈΓ2 stabilizing x(e). Since D ~ Sp (4, 2) ~ X6, every nonidentity
2-element in D has jD-conjugacy class of size divisible by 5. Since
the set of a(t) inverting x is a union of D-conjugacy classes, the
number of such a(t) is divisible by 5.

Adding up these contributions, we get ^(iϊΊ) = 2(mod 5) in the
case H2 ~ A8 x Z2.

Assume H2 ~ A8. Using Schur's generators and relations for A8

[15] (1911), we find that an involution in A8 is represented in A8 by
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an element of order 4 if and only if it can be written as the product
of two disjoint transpositions. For types (i), (iii), we get one g each.
For each of (ii), (iv), we get 3.5.7 involutions. The contribution of
types (v), (vi) and (vίi) is a multiple of 70. For each of (viii) and
(ix), the contribution is a positive multiple of 5.

So, adding the contribution, we get s{H^) = 2 (mod 5) in the case
H2 ~ A8 as well.

Next, we count s(iϊi) in a different way, using a theorem of
Frobenius and Schur, [8], §3. Namely, if G is a finite group, then
s(G) = Σ y(Z)X(l)> where the sum ranges over the irreducible charac-
ters χ of G,

= -pr.Έiliy2) (sum over all yeG), and where v(χ) = 1

if and only if χ is afforded by a real representation, v(χ) = — 1 if
and only if χ is real but not afforded by a real representation, v(χ) = 0
otherwise.

The proper normal subgroups of Hx are E = 02(Hx) and £". We
have

X + μ

where

λ = Σ »tt)Z(l) and μ =
j ^ ' k l=κerχ

so that λ = s(HJE').
Consider those χ occuring in μ. Since χ | £ is a sum of characters

faithful on E, the arguments of §11 show that χ = ξη, where rj is
the character of the 16-dimensional representation constructed in § 11,
and ξ is any irreducible character of H1 with kernel containing E.

Now, by the results of §11, η is afforded by a rational (hence,
real) representation, and so v(η) = + 1 . A study of [8], §3, shows
that we can get v(χ) = v{ζη) = v(ξ). Therefore,

μ = Σ ^(χ)χ(i) - Σ
kerχ=l kerί^A

= 16 s(HJE) = 16
ξ

- 16 {1 + 3 5-7 + 2.3-5.7} = 16 (316) .

We now have the value of μ. We next calculate the value of
λ = s(HJEr) under the assumption that (*) splits.

Denote images under Hι—^Hι — HJE' by bars. We have S1 =
EHi9 a semidirect product. Note that H2 = A8 has two classes of
involutions, represented by, say, h and Jc. We choose notation so
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that, in the usual representation of A8 on 8 letters, h fixes no letter
and k fixes four. Then | Cs2(h) | = 26 3, | Cji2{k) | = 25 3. In particular,
fc is central in a Sylow 2-subgroup and k is not.

We claim that, for any involution y e B2, \CE{V) I = 24. Let veE
be a nonzero isotropic vector. Replacing h by a conjugate if necessary,
we may assume heO2(S), where S is the subgroup of H2 stabilizing
<Ί;>. Since 02(S) is elementary abelian of order 16, it does not act
regularly on the 8 letters. Thus, we may assume k e 02(S) as well.

Let Eo be the annihilator of (v) in E under the bilinear form.
Then 02(S) acts trivially on E0/(v}. Thus, any yeO2(S)* centralizes
a hyperplane of Eo, whence | CΈ(V) | ^ 24. On the other hand, H2

contains no elements which act as orthogonal transvections on E.
Thus, I CE(V) I - 2*.

Setting y — h or k, we get our claim.
We can now calculate s(H^}, Every g e H1 can be written g — xy,

xeE,yeH2. We have g2 = 1 if and only if x2 = y2 = [x, y] = 1.
We have shown that if y eH2 is an involution, | CE(V) I = 24. Since
the classes of involutions of H2 are represented by h and k we have

= \E\ + 24{3.5.7 + 2.3.5.7} = 16{4 + 105 + 210}

- 16 (319) .

It follows that siH,) - λ + μ - 16 (319 + 316) - 16(835).
From our first count, we have s{H^} = 2(mod 5), but here we have

shown that sCEQ = 0 (mod 5). This contradiction shows that (*) is
not split. Therefore, Theorem l(a) holds in the case n — 3 as well.

This completes the proofs of all the Theorems.
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