Pacific Journal of

Mathematics

ORDERS IN SIMPLE ARTINIAN RINGS ARE STRONGLY
EQUIVALENT TO MATRIX RINGS

JULIUS MARTIN ZELMANOWITZ




PACIFIC JOURNAL OF MATHEMATIC
Vol. 48, No. 2, 1973

ORDERS IN SIMPLE ARTINIAN RINGS ARE
STRONGLY EQUIVALENT TO MATRIX RINGS

JULIUS ZELMANOWITZ

The result indicated by the title will be proved. More
specifically stated: when R is a left order in a simple artinian
ring Q, there exist matrix units {e;;} for @ and an element
re€ D, where D is the intersection of the centralizer of {e;;}
with R, such that rRr S > De; and >,rDe; S B. The
Faith-Utumi theorem is an immediate consequence of this
relationship. Furthermore, if R is either a maximal order,
or is subdirectly irreducible, or is hereditary, then there is
a left order C in the centralizer of {e;;} which inherits the
corresponding property of R and such that R is equivalent
to the matrix ring > Ce;;.

Introduction. A subring R of a simple artinian ring @ is a left
order in @ if every element of @ is of the form s for some », s € R.
An order in @ is a right and left order. Two left orders R and R’
in Q are equivalent if there exist units p, ¢, v, ¢’ of @ with pRqg < R’
and p’R'q’ & R; one then writes R ~ R'. A maximal left order in Q
is a left order in @ which is maximal in its equivalence class. It is
assumed throughout that all left orders are inside a fixed simple
artinian ring @, and also that rings do not contain identity elements
unless specifically indicated.

In the classical situation, by which is meant the theory of maxi-
mal orders over a Dedekind domain [2], all the maximal orders are
equivalent. This remains true in the more general situation of
Dedekind orders [9], and there exists in each equivalence class a
matrix ring over a (not necessarily commutative) integral domain.

The first main result of this paper in § 2 shows that given a (left)
order R in @ there exist matrix units {¢;;} for Q with centralizer 4
and an element reD = 4N R with »Rr & 3, De;;, » >, De;; & R, and
S, De;r & R; as expected, D is a (left) order in 4. Thus, in particu-
lar, R containg the matrix order 3, rDe,;, giving the conclusion of
the Faith-Utumi theorem [4]; and R ~ > De;; {11], with a somewhat
stronger condition actually satisfied. The additional information en-
ables one to consider the important special cases when R is a maxi-
mal, or a subdirectly irreducible, or a left hereditary left order. In
each of these cases, a maximal left order C < 4 is chosen with the
same property as R and with » >, Ce;;r & R and »Rr < >, Ce;;. These
are treated in §3-§5, where partial results are also obtained for
simple orders. The method of proof involves only the machinery of
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linear algebra over Ore domains.

1. Preliminaries. The reader is assumed to be familiar with
Goldie’s characterization of (left) orders in simple artinian rings [5],
with the definition and use of Morita contexts in this setting (cf. [1],
[10]), and all attendant concepts (uniform module, essential submodule,
and so on).

Throughout, B will denote a fixed (left) order in a simple artinian
ring @, M will be a fixed uniform left ideal of R, N = Hom(M, R),
E = End,M; and, except where specifically indicated otherwise, atten-
tion will be directed to the standard Morita context (R, M, N, E) with
bimodule maps (,): MK ;N— R and [,]: NQ.M— E defined via
(m, n) = (myn, m'[n, m] = (w', n)m for all m, m e M, ne N (homo-
morphisms being written opposite scalars). Observe that (,) and [, ]
are nonsingular in all four variables. The well-known results pre-
sented in this section are of fundamental importance in the sequel.

Lemma 1.1, E = End,M is a (left) order in the division ring
End, QM.

Proof. QM is a minimal left ideal of @ and is the R-injective
hull of M. Hence one may regard E = End,M as a subring of the
division ring 4 = End,QM. Given pe 4, set M, = Mp™ N M. Then
0= [N, Mp] = [N, M,Jp < Ep N E, and it follows that E is a left
order in 4.

Next suppose that R is also a right order in ¢. Then one may
regard [N, M,] as a right ideal of End;M, (by restricting the action
of N to M,). Moreover, End;M, is a right order in 4 because
M@®[N, M, € (M, N)M, & M,. Since [N, M,] is also a left ideal of E,
it follows that E is a right order in 4.

LeMmA 1.2. (Dual Basis Lemma) There exist elements

My, My, v+, M€ M, 0y, Ny, +++, 0, EN, 0 £ Q€ E, r= i‘,l(mi, n;) ER
i,j=
satisfying:
(1) 7y My, <o, n, is a maximal linearly independent subset of
=N
(ii) [n;, m;] = 6;;0 for © and j (where d;; is the Kronecker delta);
(iii) » is a regular element of R (i.e., r is a unit in Q);
(iv) nr = an; and rm; = ma for each i.

Proof. N = Hom(M, R) can be regarded as an essential E-sub-
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module of N = Hom, (QM, Q), and the latter is a finite dimensional
vector space over 4 = End, QM. Thus N is the E-injective hull of
N, and ;N is finite dimensional and torsion-free. This being the
situation, proofs of the lemma may be found in [1] and [10], except
for the last assertion that rm; = m,a for each 7. To see this, it
suffices to show that [n;, rm;] = [n,;, ma] for each j; and this is
evident since [n;, rm; — m,a] = a[n;, m;] — [n;, m;la = 0;;(a®* — a*) = 0.

2. Main results. The notation in this section continues that
of §1, and the notation now introduced will be followed consistently.
All sums will be taken over the integers from 1 to .

Observe that

P, m) = S (M, 0 (M, 1) = S (milms, m], m5) = (maa, )
Similarly, (m;n;r = (m,;, an;), so that
(1) r(m;, n;) = (mg, n)r forall 14, 7<¢.
Thus defining
(2) € = 17 (m, ;) = (Mg, n)rT,

it is easy to check that {e;;:1 <4, 7 < ¢} is a set of matrix units for
Q. Set

4={geQ:qe; =¢;q forall 11,51,

and let D =4NR.
Clearly then 4 is a division ring and @ = >, ; de;; = 4,.

Let R,= {3 (m:b;;, n;): bi; € B}, Dy={3; (m;d, n;): be E}. Both
R, and D, are subrings of R. They are related as follows.

LEMMA 2.1. D, & D and R, = >,,; De;je

Proof. Let 3, (mb, n;)eD,bec E. Then for any choice of k&
and £,

25 (md, mi)er, = 35 (b, m)(my, n)r™ = (mb, any)r™ = (mb, n) ;

and similarly, e.,>. (m;b, n;) = (m;b, n,). Hence D, & D.
Now given 3;; (m;b;;, n;) e Ry, b;;€ E; for each 1 =14, < ¢, set
7'“' - Zk (mkb”, ’}’bk) [< Doo Then

Tis€ss = D2u(Mybij, M) (M, n)r™ = (Mby;, any)r™ = (m;by;, ny) .

ThU.S -RO = Z":yj Doe“’o

THEOREM 2.2. Let R be a (left) order in Q. Then
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(i) reD, 3, ;rDe; S R, and >, ; De;;r & R.
(ii) rRr S R, &S 3;,; De;;.

(iii) R~ R, ~ 3., De;.

(iv) D, and D are equivalent (left) orders in 4.

Proof. That re D is obvious from the definition of » and (2).
SuirDe; =y e;0D =3 ; (mg, m;)D S R, and similarly >; ;De;;r S R.
rRr = 3 (m;, )R 3 (my, ny) = 3, (mi[n. R, mj], n;) S R,

= z Doe.;,- g 2 De“- .
(iii) is a consequence of (i) and (ii). Thus in particular, R, = >; ; De;;
and Y ; De;; are also (left) orders in Q. This implies that D, and D
must be (left) orders in 4. It remains to prove that D and D, are

equivalent. While this follows from (iii), it is useful to observe that
in fact

(3) rDr S D, .
To see this it suffices to verify that
(4) [nd, m;] = 6;1[nd, m] for any 1 <4, <t and deD.

Now, r~*(m,[n.d, m;], n,)r™ = e;de;; = de;;e;; = 0 when ¢+ j. Hence

(mind, mj], n;) = 0, and so a[n.d, m;la = [n;, m][nd, m;][n;, m;] = 0,

which establishes that [n,d, m;] = 0 when ¢ = j. Similarly,
r7(my([n.d, m] — [nd, m]), n;) = e;de; — eude; = 0,

from which it follows as above that [n.d, m;] — [n.d, m,] = 0.

COROLLARY 2.3. (Faith-Utumi [4]) Givern a (left) order R in a
simple artinian ring Q there exist matrix units {e;} for Q, and a
(left) order C in the centralizer of {e;;} such that C= R and 3; ; Ce;; = R.

Proof. C=rD is a right ideal of D, and hence C is a (left)
order in 4.

3. Maximal orders. The results of the previous section facili-
tate a rapid treatment of maximal orders.

THEOREM 3.1. If R is a maximal (left) order in @, them there
exists a maximal (left) order C in 4 such that rRr < > ; Ce; and
>irCer & R.

Proof. Of course 1e¢ R, since R is a maximal left order in Q.
Let C be any left order in 4 containing D and equivalent to D.
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Then without loss of generality, it may be assumed that there exists
d,d'e D with dCd’ < D. Consider R’ = R + Rr(3;,; Ce;)rR; R’ is
a left order in @ because R < R’ and rRr & >,.;De; & Du.; Cesj.
Also R’ is equivalent to R because

rdrRrd S rd >,;,; Ce;;d S r >y Dei; S R

By the maximality of R it must be the case that R = R’. In par-
ticular »(&:,; Ce;)r = X, ;7Cre;; S R. Thus »Cr & RN 4 = D.

Hence given an arbitrary left order C in 4 with D < C and
D ~ C, it is always the case that »Cr & D. This enables one to
apply Zorn’s Lemma to choose a maximal such C. The rest of the
theorem is clear.

REMARK. It would be of interest to learn whether necessarily
C =D in the above theorem; especially in the case where M is a
basic left ideal. The answer is not known to the author at this time.

4. Simple orders. The obvious question for simple orders with
1 is whether they are equivalent to matrix rings over simple Ore
domains. The analogous question for Morita-equivalence is not as yet
settled (see [3]). Unfortunately, even in the present simplified setting
one encounters the same difficulties as arise for the Morita-equivalence
problem. Recall that a ring is subdirectly irreducible if it has a
unique nonzero minimal ideal. As usual the notation follows that of
prior sections.

THEOREM 4.1. If R is a subdirectly irreducible (left) order in
Q, then there exists a subdirectly irreducible (left) order C in 4 such
that >;,;rCre;; S R and rRr = 3 ; Ce;;. Moreover, if R is maximal
m Q, C can be chosen maximal in 4.

Proof. When R is a maximal (left) order, choose C containing
D as in Theorem 3.1; otherwise, take C = D. It remains only to
verify that C is subdirectly irreducible. For this, let I be the unique
minimal ideal of R, and let A be any nonzero ideal of S = 3 ; Ce;;.
Then RrArR is a nonzero ideal of R, and so I & RrArR. Hence
rIr & (rRr)A(rRr) = SAS < A. Since A was arbitrary, »Ir = 0 is
contained in the intersection of the ideals of S. Such ideals are of
the form 3;; Be;; for B an ideal of C; and from this it is immediate
that C has a minimal ideal.

COROLLARY 4.2. If R is a simple (left) order with 1, then there

exvists a subdirectly irreducible maximal (left) order C in 4 such that
>uiTCre; & R and rRr = 3, ; Ce;;.
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LeEMMA 4.3. 77D, is a ring isomorphic to E under the homomor-
phism defined via b— r~' >, (m;b, n;) for be E.

Proof. The verification is entirely routine once it is proved that
the map is multiplicative; and for this it suffices to demonstrate that
for any b, ce E,

(5) Z (m;b, n;)r™ Z (mye, n;) = 2 (m;be, ;) .

To see this, choose b, ¢;€ E with 0 = bab = ¢,&* (this is possible be-
cause F is a left Ore domain), and then multiply the difference of
both sides of the equation in (5) by the invertible element >, (m.b,, %)
to obtain zero.

THEOREM 4.4. Suppose that B is a simple (left) order with 1,
and that R has a projective uniform left ideal. Then r~'D, is «a
simple (left) order with 1 in 4 and R ~ > ; v Dye;;.

Proof. Choose .M to be projective. Then by [6; Lemma 4], ;M
is finitely generated, and hence is an R-progenerator. It follows that
E is simple, and then by the preceding lemma D, is simple. Now
D, & rD,, and D, is a (left) order by Theorem 2.2. Hence the same
is true for »7'D,. Finally, r>y,; 7' Dye;; = >, Dees; = Ry & R and
Rr = v '(rRr) S 'Ry, = Dy,; v " Dyey;e

REMARK. In the situation of the preceding corollary, it has been
seen that »'D, is Morita-equivalent to R. Therefore, any categorical
property of R will be inherited by »'D,.

5. Dedekind prime rings. A maximal (left) hereditary (left)
noetherian (left) order R in @ is called a (l¢ft) Dedekind prime ring.
All orders in this section are assumed to contain the identity element.

THEOREM 5.1. If R s a left hereditary (left) order in @, then
r7'D, is a (left) hereditary (left) order im 4, and B ~ > ;v De;;.

Proof. Since a (left) hereditary left order is left noetherian by
[8; Theorem 8.11], E = End,M is the endomorphism ring of a finitely
generated projective module over a (left) hereditary ring. By [9;
Lemma 4.4], E is (left) hereditary, and then Lemma 4.3 ensures that
this is true for »™D,.

COROLLARY 5.2. Suppose that R is a (left) Dedekind prime ring.
Then r~*D, is a (left) Dedekind prime domain, and R ~ 3 ;v ' De;;.
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Proof. It remains only to observe that E = End,; M is a maximal
(left) order in 4. This can be found in [7; Lemma 1.7].
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