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In this paper the concept of codominant dimension is
defined and studied for modules over a ring. When the ring
R is artinian, a left R module M has codominant dimension
at least n in case there exists a projective resolution

P,—P, 14—+ —>P—>M—0

with P; injective. It is proved that every left R-module has
the above property if and only if E has dominant dimension
at least n. The concept of codominant dimension is also
used to study semi-perfect QF — 3 rings.

Let R be an associative ring with an identity 1. Denote by
o (resp. Ry;) the left (resp. right) R-module R. Using the termino-
logy of [5], we have the following definitions:

(1) R is left QF — 3, if R has a faithful projective injective
left ideal.

(2) R is left QF — 38* if the injective hull E(;R) is projective.

(38) R is left QF — 3’ if E(,R) is torsionless, i.e., there exists
a set A such that E(R) < [I, R.

In general (1)=(3). For perfect rings the three conditions
are equivalent for left and right QF — 3 rings. (See [5].)

The dominant dimension of a left (resp. right) R-module M,
denoted by dom. dim (M) (resp. dom. dim (My)) is at least n, if there
exists an exact sequence

0 M X, X,

of left (resp. right) R-module where each X; is torsionless and injec-
tive for i =1, .-+, n. See [3] for details.

Note that this says when dom.dim (zR) =1 and R is left-
artinian that E(Re;) for i =1, -+, n is projective where {¢;}, =1, -+, n
is a complete set of orthogonal idempotents, and that each X, is
projective.

We define codominant dimension as follows:

Let M be a left R-module. The codom.dim of M is at least =
in case there exists an exact sequence

P, > P, o P, M 0

where P; is torsionless and injective for ¢ =1, «+., m.
Following the notation of [3], we say that if such an exact
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sequence exists for 1 < ¢ < n, but no such sequence exists for 1 <
1< n + 1, then codom. dim (M) = n. If such a sequence exists for
all n then codom.dim (M) = «. If no such sequence exists codom.
dim (M) = 0.

An R-module U is defined to be a cogenerator if for any module
M we can embed it in a product of copies of U. We have:

LEMMA. Let U, V be left injective cogenerators then the
codom. dim (U) = codom. dim (V).

The proof follows easily from properties of injective cogenerators
and shall omit it.

Let U be a left injective cogenerator. If the codom.dim (U) = =,
we say that R has l.codom.dim (;R) = #. In a similar manner one
defines 7. codom. dim (R;). Note that if ,R is artinian, products of
projectives are projective and direct sums of injectives are injective.
Hence l.codom.dim (R) = » is equivalent to the existence of a
resolution

P, P, <o P, U 0

where P, is projective and injective and U = E(S) @ --- @ E(S,)
where S;:i =1, ..+, n is a copy of each simple left R-module.

In §1 we characterize semi-perfect QF — 8% rings in terms of
their finitely generated projective, injectives.

In §2 we show that l.dom. dim (R) and l.codom.dim (,R) are
the same for artinian rings. Hence, if R is artinian QF — 3 then
the l.-dom. dim (r-dom. dim) 1. codom. dim (r-codom. dim) are the same.

For notation we use J to donote the Jacobson radical, and R“(R“)
denotes a direct sum (resp. direct product) of A-copies of R. Also
E(M) will be used to denote the injective hull of an R-module M
and P(M) will denote the projective cover of M when M has a pro-
jective cover. For a left R-module M, we let 4(M)={xc R|z-M =0},
and .y(l) ={xeM|I.x =0} where IS RER. We will use T(M) to
denote M/J(M) where J(M) is the Jacobson radical of M.

1. QF — 3 Rings. Recall that if R is noetherian rt-QF — 3 =
- QF — 3*. (See [1] and [6].)
To begin with we shall prove that under those hypotheses
1t QF — 8% —= 1t QF — 3’ .

PROPOSITION 1.1. Let 4R be moetherian. If E(Ry) s torsion-
less then E(Ry) 1s projective.
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Proof. Given that 0 — E’i R4 is monic, where A is an indexing
set. We show that there exists a finite number of R,’s, ac A say
R., «--, R., such that 76|, =0 where = is the projection R*—
@ >~ R,, is monic. Let S be the set of all finite intersections of
right ideals {K,}.., where K, = ker (7, 0 |;). Note that M., K., induces
a natural embedding of

0— R|() K, — R™ .
Thus R/Ni. K., is torsionless. Hence by [2, Thm. I, p. 350]
Q K, = zm/m(\él Kai> .
Now since R noetherian, the set {#(N, K.,)} has a maximal element

%&(N. K.,) where rn]KaieS. Thus .oa(N K.) = N K., 1s a
i=1

minimal right ideal in S. But then e N, K., = ® € Naes Koo Thus
», K, =0. This implies that # is monic. But then nf is monic
since ker (76) N R = 0 if ker (zf) = 0. This shows E is projective.
We next show that QF — 3t = QF — 3 for semi-perfect rings.
First we need the following lemma.

LEMMA 1.2. Let K be finitely generated. Suppose there exists
an exact sequence

0 K K E,

where B(K) = K, E;,, = E(E;) for 1 <1< n— 1 and each E; s pro-
jective. Then K, -++ FE, are all finitely generated.

Proof. This follows easily from the proof of [4, Lemma 1].

PRrROPOSITION 1.3. Suppose R is semi-perfect. If R isleft QF —
3" then R is left QF — 8.

Proof. By Lemma 1.2 E(R) is finitely generated. Since R is
semi-perfect E(R) = @ >, Re;, where each ¢; is an indecomposable
idempotent.

Let Re, ---, Re, be a subset of Re, ---, Re,, where the set
{Re,, -+, Re,} is a complete set of isomorphism classes of {Re,, -+, Re,}.
Then U= Re, @ -+ @ Re, is a minimal projective injective.

Now we come to the main theorem of this section.

THEOREM 1.4. Let R be semi-perfect. The following are equiva-
lent:
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(a) R is left QF — 3+.

(b) EGR) is finitely generated and every finitely generated left
injective has an injective projective cover.

(¢) Ewvery finitely generated left projective has a projective
wngective hull.

Proof. (b)= (a): Consider
P(E(R)) — E(R) — 0 .

Embed REE'(R) then by the projectivity of R there exists a map
0': R— P(E(R)) such that ¢’ is monic.
Consider the following diagram:

0 — R—. E(R)
0" ,/
l z/ 9//

P(E(R)) .

Here 6”(r) = ¢'(r) for all rc R. Also 6" is monic. The injectivity
of E(R) forces E(R) to be a direct summand of P(E(R)), hence
projective.

(@) = (c): Consider R™, R™ < E(R)™. Thus E(P)< E(R)", where
PP P = R™, as a direct summand. Hence E(P) is projective. The
converse is trivial.

(a) = (b): By Lemma 1.2 E(R) is finitely generated.

Consider P(E) A E — 0 where P(F) is finitely generated injective.
Let R™ -2 E— 0. Combining the above maps we have the following
diagrams:

«(n)

0 — R 2 B(R)™

,/
Yy
o| i

E.
So we have 0 epic and o -’ = p. Further we have
E(R)™
;;'/ l o
P(E) -2 E—0

Noting that 0" is epic and P(F) is projective, P(E) is a direct
summand of E(R)™. Hence injective.

A ring is perfect in case every module has a projective cover.
We show that QF — 3* rings can be characterized in terms of the
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projective cover of E(zEK).

THEOREM 1.5. Let R be perfect. Then every indecomposable
summand of P(E(,R)) is injective if and only if R is left QF — 3*.

Proof. = Consider the following diagram:

?RR
1 l%
/ i
P(E(zR)) — E(;E) — 0.

Here 7 is a monomorphism and = is epic. Since R is projective there
exists on f such that zf = 7. Clearly f is monie. Since R is perfect
P(E(3R)) == Y.c 4 Re., where e, are primitive idempotents of R. Now
Im(f) is contained in >}*_, Re, for = a positive integer, since R
is cyclic.Thus using the hypothesis, E(,R) is projective and R is left
QF — 3%, < This is trivial.

2. Codominant dimension of rings. We begin with a lemma
which holds the key to the main results of this section.

LeEMMA 2.1. Let R be a ring. The following conditions are
equivalent.

(1) For every projective left R-module P, there ewists an exact
sequence

0 P E, E,

where E;, 1 <1< n, are injective and projective.
(2) For every injective left R-module @, there exists an exact
sequence

P, > P, cee P, Q 0

where P;, 1 <1< n, are injective and projective.

Proof. (1)=(2). For n =1 a modification for the proof of
Theorem 1.4 will suffice. We assume the lemma is true for the nth
case and prove the » + 1 case. So consider the following exact
sequences.

(1) 0—P,,-m -t g ... g,

(2) PP,

b P 0—0.

Here @ is an arbitrary injective module and
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P, P, B, -, FE,,

are both projective and injective and P,., is projective.

Also E, is the injective hull of Cok (J,).

Denote by K the image of 6,. Using the injectivity of P,, there
is a map 6, E,— P, such 6,J, = ¢,,,6, where t,,, is the embedding
of K into P,. The injectivity of P,_, and the exact sequence 0 —
E/P,,.— E, induce a map 6,: E,— P,_, which one can easily check
has the property 6.J, = 1,0,.

In like manner we can define 4,: E,_, — P,.,_, such that

OJos = tnssiOhy s k=2, m+ 2.

This information is summed up in the following diagram:

Jz J’n+1
0 4 P'n+1 - ? El > Ez cee En+1 > Lipiy
e e e

h h h 4

7 7 g
01 "+/1’ 0> il 03 On+1 /1' Or2
/, l // l l /,/ l
/ /
¢ Tntl L g, v i
Pn Pn——«l tee Pl Q 0 *

ek
%

Having constructed 6,.,, the projectivity of E,,, induces a map
h: E,,,— P, such 2,h, = 0,.,. Now consider the map AJ,,, — 0,..: E,—
P1- We have il(hlJn—H - 0n+1) = 0n+2 nt1 T i10n+1 = 0. SO Im (hlJ'ﬂ+1 -
0.+, = ker (i,).

Now consider the following diagram:

E,
// lh1Jn+1—0n+1
Pz"‘"’IH’l(%)—*O .

We can construct h, using the projectivity of E,. By a similar
argument we can show that Im (2,J, — 0,) < ker (¢,). By a recur-
sive argument we can construct A,J,.o — Opie fOr B =1, n
in like manner. In particular we have h,J, — 6,: E,— P, where
Im®,J, — 6,) < K. We need only show equality to complete the
proof. Let ke K. Then there exists an x ¢ P,,, such that 6,(x) = k.
Thus (h,J, — )(J(—x) = 0,J,(x) = 0,(x) = k. Thus h,J, — 6, maps
on to K. The proof (2) = (1) is similar. This completes the proof.

Noting that for left artinian rings products of projectives are pro-
jective, and direet sums of injectives are injective one can easily show
that dom. dim (R) = » implies dom. dim. (P) = » for all projective P.
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Likewise letting I = @ 3, E.(S,) be the minimal injective cogenerator
of R, we find that codom. dim(I) = » implies codom. dim (@) = = for
all injectives Q. Thus we have:

THEOREM 2.2. Let R be left artinian then the following are
equivalent:
(1) The inf {m e Z|dom. dim (P) = m for all P projectives} = n.
(2) The inf{me Z|dom. dim (@) = m for all Q injectives} = n.
(3) l.dom.dim (zR) = n.
(4) L codom.dim (rR) = n.
If no such n exists we say 1. dom. dim (R) = o

Proof. (3) = (1), (4) = (2) by our previous discussion. (1) = (3):
There exists a projective module P such dom. dim (P) = n.

Now P=&>,. Re, {e. primitive idempotents such that for
some ¢; dom. dim (Re;) < n + 1 where ¢;e{e,}. Since Re; < R, n+1>
dom. dim (R) = wn. This yields the desired result. (2) = (4) is similar.
(1) = (2): By Lemma 2.1 inf {m € Z | codom. dim (@) = m} = n. If inf of
the above set is strictly greater than =, another application of the
lemma forces inf{me Z|m = dom.dim (P), P projective} > n which
is impossible. (2) = (1) is similar.

Let R be left artinian and both left and right QF — 8. Then
by [4, Thm. 10] 1. dom. dim (R) = r. dom. dim (R;). Thus in view of
2.2 we have:

PROPOSITION 2.3. Let R be artinian and QF — 8. Then
1. domdim (yR) = r. domdin (R;) =1. codomdin (R)=r. codomdim (R;) =n.

Acknowledgement. The author wishes to thank the referee for
his proof to Theorem 1.5 which is simpler than the author’s original
version.

REFERENCES

J. P. Jans, Projective injective modules, Pacific J. Math., 9 (1959), 1103-1108.

T. Kato, Duality of cyclic modules, Tohoku Math. J., 14 (1967), 349-356.

, Rings of dominant dimension = 1, Proc. Japan Acad., 44 (1968), 579-584.
B. J. Muller, Dominant dimension of semi-primaery rings, J. reine angew. Math.,
232 (1968), 173-179.

5. H. Tachikawa, On left QF—3 rings, Pacific J. Math., 31 (1970), 255-268.

6. , Lectures on QF—38 and QF—1 Rings, Carleton Mathematical Lecture
Notes No. 1, July, 1972.

1
2
3.
4

Received February 8, 1972 and in revised form Junuary 3, 1973,

UNIVERSITY OF WESTERN AUSTRALIA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

J. DUGUNDJI¥*

Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

K. . BECKENBACH B. H. NEUMANN

F. WoLr K. YosHiDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

# 0. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace

J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 49, No. 1 May, 1973

A. Bigard, Free lattice-ordered modules . . ................ ... i .. 1
Richard Bolstein and Warren R. Wogen, Subnormal operators in strictly cyclic
OPErator AlGEeDTAS . . ... ... e 7

Herbert Busemann and Donald E. Glassco, Il, Irreducible sums of simple
TMUITIVECTOTS . . . . oo oot e e e e e e e e e e e 13

W. Wistar (William) Comfort and Victor Harold Saks, Countably compact groups

and finest totally bounded topologies ............ ... .ot 33
Mary Rodriguez Embry, Maximal invariant subspaces of strictly cyclic operator

AlEDIAS . . ... 45
Ralph S. Freese and James Bryant Nation, Congruence lattices of semilattices. . . . .. 51
Ervin Fried and George Gritzer, A nonassociative extension of the class of

distributive lattices. . .......... ..o i 59
John R. Giles and Donald Otto Koehler, On numerical ranges of elements of locally

M-CONVEX QLGEDTAS . ...\ vt 79
David A. Hill, On dominant and codominant dimension of QF —3 rings ........... 93
John Sollion Hsia and Robert Paul Johnson, Round and Pfister forms over R(t) .... 101
I. Martin (Irving) Isaacs, Equally partitioned groups . ..................cccoo.... 109

Athanassios G. Kartsatos and Edward Barry Saff, Hyperpolynomial approximation
of solutions of nonlinear integro-differential equations. ...................... 117

Shin’ichi Kinoshita, On elementary ideals of 6-curves in the 3-sphere and 2-links in
the d-Sphere. ... ...

Ronald Brian Kirk, Convergence of Baire measures. . .........
R. J. Knill, The Seifert and Van Kampen theorem via regular co
Amos A. Kovacs, Homomorphisms of matrix rings into matrix

Young K. Kwon, H D-minimal but no H D-minimal . ..........
Makoto Maejima, On the renewal function when some of the me
ATCTNfINILE .« o v v et ettt
Juan José Martinez, Cohomological dimension of discrete modu
QEOUDS . ottt e e
W. K. Nicholson, Semiperfect rings with abelian group of units
Louis Jackson Ratliff, Jr., Three theorems on imbedded prime di
Ideals. ... .o
Billy E. Rhoades and Albert Wilansky, Some commutants in B(
TRAITICES « o oot e et e ettt
John Philip Riley Jr., Cross-sections of decompositions. . . ... ..
Keith Duncan Stroyan, A characterization of the Mackey unifor
JINTLE MEASUTES ... oo v oottt et e eannd
Edward G. Thurber, The Scholz-Brauer problem on addition ch
Joze Vrabec, Submanifolds of acyclic 3-manifolds . ...........
Philip William Walker, Adjoint boundary value problems for co
differential operators..............c.uuiiiiiiiiiiiieann.
Roger P. Ware, When are Witt rings group rings . .............
James D. Wine, Paracompactifications using filter bases . . . . . ..


http://dx.doi.org/10.2140/pjm.1973.49.1
http://dx.doi.org/10.2140/pjm.1973.49.7
http://dx.doi.org/10.2140/pjm.1973.49.7
http://dx.doi.org/10.2140/pjm.1973.49.13
http://dx.doi.org/10.2140/pjm.1973.49.13
http://dx.doi.org/10.2140/pjm.1973.49.33
http://dx.doi.org/10.2140/pjm.1973.49.33
http://dx.doi.org/10.2140/pjm.1973.49.45
http://dx.doi.org/10.2140/pjm.1973.49.45
http://dx.doi.org/10.2140/pjm.1973.49.51
http://dx.doi.org/10.2140/pjm.1973.49.59
http://dx.doi.org/10.2140/pjm.1973.49.59
http://dx.doi.org/10.2140/pjm.1973.49.79
http://dx.doi.org/10.2140/pjm.1973.49.79
http://dx.doi.org/10.2140/pjm.1973.49.101
http://dx.doi.org/10.2140/pjm.1973.49.109
http://dx.doi.org/10.2140/pjm.1973.49.117
http://dx.doi.org/10.2140/pjm.1973.49.117
http://dx.doi.org/10.2140/pjm.1973.49.127
http://dx.doi.org/10.2140/pjm.1973.49.127
http://dx.doi.org/10.2140/pjm.1973.49.135
http://dx.doi.org/10.2140/pjm.1973.49.149
http://dx.doi.org/10.2140/pjm.1973.49.161
http://dx.doi.org/10.2140/pjm.1973.49.171
http://dx.doi.org/10.2140/pjm.1973.49.177
http://dx.doi.org/10.2140/pjm.1973.49.177
http://dx.doi.org/10.2140/pjm.1973.49.185
http://dx.doi.org/10.2140/pjm.1973.49.185
http://dx.doi.org/10.2140/pjm.1973.49.191
http://dx.doi.org/10.2140/pjm.1973.49.199
http://dx.doi.org/10.2140/pjm.1973.49.199
http://dx.doi.org/10.2140/pjm.1973.49.211
http://dx.doi.org/10.2140/pjm.1973.49.211
http://dx.doi.org/10.2140/pjm.1973.49.219
http://dx.doi.org/10.2140/pjm.1973.49.223
http://dx.doi.org/10.2140/pjm.1973.49.223
http://dx.doi.org/10.2140/pjm.1973.49.229
http://dx.doi.org/10.2140/pjm.1973.49.243
http://dx.doi.org/10.2140/pjm.1973.49.265
http://dx.doi.org/10.2140/pjm.1973.49.265
http://dx.doi.org/10.2140/pjm.1973.49.279
http://dx.doi.org/10.2140/pjm.1973.49.285

	
	
	

