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HD-MINIMAL BUT NO HD-MINIMAL

Young K. KwoN

Let Uk, (resp. U 1"}3) be the class of Riemannian n-
manifolds (» = 2) on which there exist & non-proportional HD-
minimal (resp. lﬁ)-minimal) functions. The purpose of the
present paper is to construct a Riemannian n-manifold » = 3
which carries a unique (up to constant factors) HD-minimal
function but no HD-minimal functions. Thus the inclusion
relation
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is strict for » = 3. By welding % copies of this Riemannian
n-manifold, it is then established that the inclusion relation
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is strict for all k=1 and n» = 3. The problem still remains
open for n = 2.

1. An HD-function (harmonic and Dirichlet-finite) ®w on a
Riemannian n-manifold M is called HD-minimal on M if w is posi-
tive on M and every HD-function @' with 0 < @ < @ reduces to a
constant multiple of w on M. Let {®w,} be a sequence of positive
HD-functions on M. If the sequence {w,} decreases on M, the limit
funection is harmonic on M by Harnack’s inequality. Such a harmonic
function is called an HD-function on M, and I/I\]/)—minimality can be
defined as in the case of HD-minimal functions.

These functions were introduced by Constantinescu and Cornea
[1] and systematically studied by Nakai [6]. In particular the
following characterization by Nakai is important (loc. cit., ef. also
Kwon-Sario [5]):

(i) A Riemannian n-manifold M carries an HD-minimal func-
tion @ if and only if the Royden harmonic boundary 4, of M containg
a point p, isolated in 4,. In this case w(p) >0 and w =0 on
4y — (B .y

(ii) A Riemannian n-manifold M carries an HD-minimal func-
tion w if and only if the Royden harmonic boundary 4, of M has a
point p of positive harmonic measure. These are corresponded such
that lim sup,cy,.., @®(x) > 0 and lim sup,.y,,., @®(®) = 0 for almost all
ge 4,y — {p} with respect to a harmonic measure on 4,,.

Since an isolated point of 4, has a positive harmonic measure,
the above characterization yields the inclusion
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for all £k = 1.
For the notation and terminology we refer the reader to the
monograph by Sario-Nakai [7].

2. Let n = 3. Denote by M, the punctured Euclidean n-space
R™ — 0 with the Riemannian metric tensor

gii(@) = @ [7*A + |2 [P0, 1=i, j=n

where |2 | = [, ()] for » = (2, @°, «++, ") € M,.
For each pair (m,l) of positive integers m, I, set

H,, = {8vecM,||z|=1 and 2 = 0},

where k= 2""2l—1) — 1, and ax = (ax', aa? -, ax™) for x = (x', &%, -+,
2"y c M, and real a. Let M; be the slit manifold obtained from M,
by deleting all the closed hemispheres H,;,. Take a sequence {M,(})}7
of copies of M;. For each fixed m =1 and subsequently for fixed
j=0and 1<1¢<2™", connect M,(t + 2™j), crosswise along all the
hemispheres H,, (I = 1), with M/ + 2™ - 2™j).

The resulting Riemannian n-manifold N is an infinitely sheeted
covering manifold of M,. Let n: N — M, be the natural projection.

The following result is essential to our problem (Kwon [4]):

THEOREM 1. A function wu(x) is harmonic on N if and only if
[1 + 7@ | "ju(x) @s 4,-harmonic (harmonic with respect to the

Euclidean structure) on N. In particular every bounded harmonic
function w(x) on the submamnifold

G:{xeN;m(x)|>%}

is constant onm wNx) for each xzec M, whenever it continuously
vanishes on

_ A~ 1
3G = {xeN} (@) | = 3} .
3. For each integer [ = 1, consider the subset of N:

N = Drolu[y 6]
where

G = {we (i) || =) > =} -

It is obvious that
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¢=UG

and the Riemannian n-manifold G is an infinitely sheeted covering
manifold of the annulus {wxe M,|1/3 < |z]| < o}.
We are now ready to state our main result:

THEOREM 2. The Riemannian n-manifold G (n = 3) carries a
unique (up to constant factors) HD-minimal function but no HD-
maintmal functions. Thus the inclusion

1
}[D c UI’;;,
is strict for Riemannian manifolds of dim = 3.

The proof will be given in 4 — 5.

4, For m =1 construct u,c HBD(N,), the class of bounded
HD-functions on N,, such that 0<%,<1 on N, %,=0 on
M (%) — Gy, and %, =1 on Uy, [MJ(#) — Gi]. Clearly w,, = 4,4,
on N and therefore the sequence {u,} converges to an HD-function
% on G, uniformly on compact subsets of G. It is easy to see that
0u<1lon Gand u|N— G=0. Since

7o) [ — 3

) = TR I

on G by maximum principle and Theorem 1, it follows that 0 <u <1
on G. Note that lim, . .. 4. (x) = 1.

We claim that the function w is HD-minimal on G. In fact,
let veI%(G) be such that 0 <» < % on G. In view of

0 < lim sup v(x) < lim sup u(x) = 0
zeG,zoy ze 6,2y
for all ye 0@, v can be continuously extended to N by setting v =0
on N— G. By Theorem 1 v attains the same value at all the
points in N which lie over the same point in M, Thus we may
assume that wu, v are bounded harmonic functions on =n(G) =
{z(x) |z € G} such that %, v = 0 on n(0G).
Again by Theorem 1, (1 + |z [®wv(x) is 4,-harmonic on #(G). In
view of the fact that 4,-harmonicity is invariant by the Kelvin
transformation, the function

1
3%——2] X l’n——Z

1+ 3ﬂ"—”|x|n~3v<9ri|2>

is 4,-harmonic on M, for 0 < |2| < 1/3 and continuously vanishes for
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|| = 1/3. Therefore, there exists a constant ¢ = 0 such that

o 2 > _ 3" *q
\9‘ T ‘:2 1 £ 32(%—2)‘ xz ‘n~z

on M, for 0 < |z| < 1/3 (cf., e.g. Helms [3, p. 81]). Thus

tim of 9]9; ,‘2> =3

exists and v = 8" %au on G, as desired.

5. Suppose that there exists another I?ﬁ-minimal function
on G. Choose a point qe 4, ., the Royden harmonic boundary of G,
such that ¢ has a positive harmonic measure and

lim sup w{(z) = 0
Tel,x—q’

for almost all ¢’ € 4,,, — {q} relative to a harmonic measure for G.
Let j: G* — G < N* be the subjective continuous mapping such that
7| G is the identity mapping and f(z) = f(j(x)) for all ze G*, the
Royden compactification of G, and fe M(N), the Royden algebra of
N. Here G is the closure of G in N*. Note that a Borel set Ec oG
has a positive harmonic measure if and only if j7'(#) has a positive
harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore, j(q) ¢ 0G
and 0G C j(dy,q)-

For each m = 1, u,(q) = u,(j(g)) = 1 since j(q) € 0G — 6G. Thus
it is not difficult to see that 0 < w < Bu,, on G, where

B = lirrisup w(x) > 0.

Therefore, 0 < w < Bu on G and @ is a constant multiple of v on G
as in 4.

It remains to show that u is not HD-minimal on G. If it were,
% would have a finite Dirichlet integral. But # has a continuous
extension to G U0G with w|0G = 0. Then by Theorem 1 u must
attain the same value at all the points in G which lie over the same
point in 7(G), a contradiction.

This completes the proof of Theorem 2.

6. Let G’ be the Riemannian #n-manifold obtained from G by
deleting two disjoint closed subsets B, C, where

9
= ’ = — 1>
B {xeMo(l)Hm 24andx:0},

) 11 1
— = >
c {meMo(l)Hx[ > andx=o}.
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For each k=2 take k copies G, G, -+, G, of G, and identify,
crosswise, B; with C;,, for 1 <1< m. Here we set C,,;, = C,. Then
it is easy to see that the resulting Riemannian n-manifold G has

exactly k& non-proportional HD-minimal functions but no HD-minimal
functions.

COROLLARY. For all k = 1 the strict inclusion
Uk, < Uz,
holds for Riemannian manifolds of dim = 3.

7. For the sake of completeness we shall sketch a proof of
Theorem 1. In view of the simple relation

du = o1 + |o )72 AL+ 7w [Tu]

it suffices to show the latter half.
For each integer k= 0 let U, be a component of the open set

{x c N| 23/0—1 < l,ﬂ-(x) I < 23k+1} s
and S, a compact subset of U, which lie over the set
{xeM,||z| = 2%}.

Since U, is a magnification of U, and the 4,-harmonicity is invariant
under a magnification, it is not difficult to see that there exists a
constant ¢, 0 < ¢ < 1, such that

|u(@) | = q-sup {Jw(@) | [z e Uy

on S, for any harmonic function % on U, which changes sign on S,.
Note that ¢ is independent of k.

Let u be a harmonic function on G such that |#| <1 and it
continuously vanishes on dG. For each m =1, denote by =x, the
cover transformation of G which interchanges the sheets of G: the
points in G N M;(Z + 2™j) are interchanged with points, with the
same projection, in MJ( + 2™ + 2™j) for =0 and 1 <1< 24
Define v, on G by

V() = —é—[u(m) — w(m@)] -

Clearly v, is harmonic on G, |v,| <1, and v, changes sign on S,,
k=22 — 1) — 1. Therefore,

max {|v,(@) | [ve S} = ¢
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for all 1 = 1. By induction on I, we derive that |v,|< ¢ on S,,
where k' = 2 — 1. Letting [ -— <, we conclude that v, =0 on G,
as desired.
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