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The main purpose of this note is to show that the finiteness
of the cohomological dimension of a discrete module is closely
related to the finiteness of its injective dimension. Moreover,
a sufficient condition for the finiteness of the cohomological
dimension is given. Both results are proved making a heavy
use of the theory of cohomological triviality for finite groups.

The reader is referred to [3] for a treatment of profinite cohomo-
logy.

Throughout this note, G is a profinite group. As usual, the
cohomology of G is denoted by H(G, ).

Recall that, if A is a discrete G-module, the infimum of the (set
of) nonnegative integers » such that H"(S, 4) = 0, for any integer
n > r and any closed subgroup S of G, is called the cohomological
dimension of A, and is denoted by cd(G, A). If S is a closed sub-
group of G, H*(S, A) = lim H*(V, A), where V runs through all open

subgroups of G containing S [3, Chap. I, Proposition 8, p. I-9]. Hence,
if HY(V, A) = 0 for every open subgroup V of G, then H*(S, 4) = 0
for every closed subgroup S of G.

In this paper, a discrete module is called injective only when it
is injective in the corresponding category of discrete modules. If A
is injective, it is well-known that cd(G, 4) = 0, because, for instance,
A is V-injective for all open subgroups V of G. Finally, recall that
the injective dimension of A, denoted by d(G, A), is the least length
of an injective resolution of A.

The connection between cohomologically trivial modules over finite
groups [2, Chap. IX, § 3, p. 148] and discrete modules of cohomological
dimension zero over profinite groups was observed, and used, by Tate
in his duality theory for profinite cohomology [3, Annexe au Chapitre
I, p. I-79]. Tate’s observation is quoted, for future reference, in the
following.

LEMMA 1. Let A be a discrete G-module. Then, cd(G, A) = 0 if,
and only if, for every open, normal subgroup U of G, the G/U-module
AV is cohomologically trivial.

Proof. See [3, Annexe au Chapitre I, Lemme 1, p. I-82]. Notice
that G/U is a finite group, because G is compact and U is open.
The Nakayama-Tate criterion for cohomological triviality takes
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the following form, in the cohomology theory of profinite groups.

PROPOSITION 2. Let A be a discrete G-module. If there exists a
positive integer q such that HY(V, A) = H™*(V, A) =0 for all open
subgroups V of G, then cd(G, 4) < q.

Proof. Since A embeds in an injective, whose cohomological di-
mension is zero, by repeated applications of dimension-shifting it
suffices to consider the case ¢ = 1. Let U be an open, normal sub-
group of G. If V is any subgroup of G containing U, the Hochschild-
Serre spectral sequence of the V/U-module AY yields the exact
sequence for low degrees

0— HYV/U, A") — H(V, A) — H'(U, 4)""
— HXV/U, A"y — H*V, A) .

Since U is open, so is V, and thus, H'(U, 4) = H(V, A) = H(V, A) =

0. Therefore, HYV/U, A") = H¥V/U, A") = 0, and applying the

Nakayama-Tate criterion [2, Chap. IX, Théoréme 8, p. 152], the G/U-

module A” is cohomologically trivial. By (1), the proof is complete.
The main result of this paper can be stated as follows.

THEOREM 3. Let A be a discrete G-module, and let q be a positive
integer. Then, 1d(G, A) < q if, and only if, cd(G, A) < q and HY (U, A)
1s a divisible abelian group for every open, normal subgroup U of G.

Proof. Assume the assertion true for ¢ — 1, with ¢ > 1. If
1d(G, A) < q, A has an injective resolution of length < ¢, say

0—sd—ux, -2 x i x_ B x .

If B = Coker e and f: X, — B is the canonical morphism, the sequence
of discrete G-modules

0—sA-"x 7

B 0

is exact. Since cd(G, X;) = 0 (injectivity of X,), from the correspond-
ing cohomology sequence it follows that

H™S, B) = H**(S, A)

for any positive integer » and any closed subgroup S of G. Therefore,
it is enough to prove that cd(G, B) < ¢ — 1, and that H* (U, B) is
divisible for all open, normal subgroups U of G. By the induction
hypothesis, this follows from showing that +d(G, B) < ¢ — 1. In fact,
if ¢': B— X, is the morphism induced by d,: X, — X,, then Kere' = 0
and Ime¢ = Imd,. Thus, the sequence
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dg—
qerq , 0

0 B Xl Xz M Xq—1

is exact.
Reciprocally, if cd(G, 4) < q, let

00— A0 0c—0

be an exact sequence of discrete G-modules, with @ injective. Then,
cd(G, C) < g — 1, because

H*S, C) = H*(S, A)

for all positive integers n and all closed subgroups S of G. By the
same reason, if HYU, A) is divisible for every open, normal subgroup
U of G, then so is H**(U, C). Hence, by induction, C admits an
injective resolution of length < g — 1, say

1 do

Y, Y, cee Y,., da—2

0 Cc

Y., 0.
Since Ker ¢h = Ker & and Im s = Im <, the sequence

ih do

0— A2, 0" v da-2

' Y, cee Y,

Y, 0

is exact, and so d(G, 4) < q.
It remains to prove the assertion for q = 1.
Let

0 A X, X, 0

be an exact sequence of discrete G-modules, where X, and X, are in-
jectives. Since c¢d(G, X;) = ¢d(G, X,)=0, passing to cohomology it
follows that cd(G, A) <1, and that the connecting operator o4 X¥ —
H\(S, A) is an epimorphism for all closed subgroups S of G. But, if
D is any injective, discrete G-module and U is any open, normal
subgroup of G, it is easy to check that DV is an injective G/U-module,
whence [2, Chap. IX, Lemme 7, p. 153] implies D? is divisible. There-
fore, as the image of a divisible group, H*(U, A) is divisible for all
open, normal subgroups U of G.
Reciprocally, suppose cd(G, A) < 1, and let

0 A Y, Y, 0

be an exact sequence of discrete G-modules, with Y, injective. Since
cd(G, Y,) = 0, taking cohomology it follows that ¢d(G, Y,) = 0, and
that the sequence of abelian groups

VS — Y52, HY(S, A) — 0
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is exact for all closed subgroups S of G. If U is an open, normal
subgroup of G, Kerd, is divisible, because so is Y. Therefore, if
Imad, = HY(U, A) is divisible, then Domd, = Y7 is also divisible, and
the proof is complete applying to Y, the following.

PROPOSITION 4. Let A be a discrete G-module. If ¢d(G, 4) = 0,
and AY is a divisible abelian group for every open, normal subgroup
U of G, then A 1is injective.

Proof. Recall that the category of discrete G-modules has in-
jective envelopes for each of its objects. Since (Z[G/U]),, where U
runs through all open, normal subgroups of G, is a family of genera-
tors, this result can be obtained by using a general theorem from
category theory, due to Mitchell [1, Chap. III, Theorem 3.2, p. 89].

Let f: A— Q be an injective envelope of A (in the category of
discrete G-modules). If C = Cokerf and g: @ — C is the canonical
morphism, the sequence of discrete G-modules
f

0— A2 2c—0

is exact. Thus, if U is an open, normal subgroup of G, the sequence
of G/U-modules

fU'

0—ar I gn P 0r 0

is exact, because ¢d(G, A) = 0. Since Q" is an injective G/U-module
and RNImfY = RN Imy for any sub-G/U-module R of Q" (because,
regarding R as a G-module, U operates trivially on R), f“: AV — @Y
is an injective envelope of A”Y (in the category of G/U-modules). On
the other hand, since cd(G, A) = 0, AY is a cohomologically trivial
G/U-module, by (1). Thus, A? is G/U-injective [2, Chap. IX, Théoréme
10, p. 154], and hence, C” = 0 [1, Chap. III, Proposition 2.5, p. 88].
Since C = Y CY, C = 0, whence the result.

COROLLARY 5. Let A be a discrete G-module, and let r be a
nonnegative integer. If cd(G, A) < r, then id(G, A) < r + 1.

Proof. Take ¢ = r + 1 in (3).
This result can be applied to profinite groups of finite dimension,
as follows.

COROLLARY 6. Let r be a nonnegative integer. The following
statements are true:

(i) If p is @ prime number and cd,(G) < r, then (G, 4) <
r -+ 1 for all discrete G-modules A which are p-primary abelian groups.
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(ii) If cd(G) £ », then 1d(G, A) < r + 1 for all discrete G-mod-
ules A which are torsion abelian groups.

(i) If scd(G) < 7, then ©d(G, A) < r + 1 for all discrete G-mod-
ules A.

(iv) If cd(G) < r, then 1d(G, Ay < r + 2 for all discrete G-mod-
ules A.

Proof. Applying [3, Chap. I, Proposition 14, p. I-20] and [3,
Chap. I, Proposition 11, p. I-17], the following three equivalences are
clear:

(i) ed(G) <7 if, and only if, ¢d(G, A) < r for all p-primary,
discrete G-modules A.

(ii) ¢d(G) < r if, and only if, ¢d(G, A) < r for all torsion, discrete
G-modules A.

(ili) scd(G) < r if, and only if, ¢d(G, 4) < r for all discrete G-
modules A.

Finally, (6, iv) is clear by [3, Chap. I, Proposition 13, p. 1-19].
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