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SOME COMMUTANTS IN B(c) WHICH ARE
ALMOST MATRICES

B. E. RHOADES AND A. WILANSKY

We determine necessary and sufficient conditions for two
linear operators in B(c) to commute. Specializing one of the
operators to be a conservative triangular matrix we determine
that most such operators have commutants consisting of almost
matrices of a special form.

Almost matrices were developed in [10] for reasons not related to
this paper, but they find application here in that the commutants in
B(c) of certain matrices must be almost matrices.

Let ¢ denote the space of convergent sequences, B(c) the algebra
of all bounded linear operators over ¢, e the sequence of all ones, and
e* the coordinate sequences with a one in the kth position and zeros
elsewhere. If Te B(c), then one can define continuous linear func-
tionals X and %; by X(T) = lim Te — X, lim (Te*) and X (T) = (Te); —
Su(Te?);, 1=1,2,--.. (See, e.g. [9, p. 241].) It is known [1, p. 8]
that any Te B(c) has the representation 7 = v ® lim + B, where B
is the matrix representation of the restriction of T to ¢, the subspace
of null sequences, v is the bounded sequence v = {X(T)}, and v ®
lim 2 = (lim z)v for each xce.

The second adjoint of T (see, e.g. [1, p. 8] or [10, p. 357]) has
the matrix representation

AUT) b, b,
L(T) by by,
(*) T = Xz(T) [

where the b;’s occur in the representation of limeT e ¢’ as (limo T)(zx) =
lim (Tx) = (T) limz + >, b,x,; namely, b, = lim Te’. With the use of
(x) it is easy to describe the commutant of any @ e B(c).

THEOREM 1. Let @ =u@lim + Ae B(c). Then Com (Q) in B(c) =
{T = v®lim + Be B(c): T satisfies (1)-(3)}, where

(1)  wX(T) + g‘iankvk = 9,2(Q) + ,,i bothe; m=1,2 -

(2)  wby o+ Dby = 0,0, + S butn; M k=12 .-
=1 j=1
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(3) ;akvk:;bkuki

and where a, = lim Q(¢*), b, = lim T{(e").

To prove Theorem 1, use the representation (x) for 7" and @
and then equate the corresponding terms in the products 7”Q"” and
Q'T". For example, (1) is obtained by equating (Q"T"),, and (T”Q")...
When @ is a matrix A, each u, =0 and each qa, = lim, a,,. The
following result is an immediate consequence of Theorem 1.

COROLLARY 1. Let A be a conservative matriz, Te B(c). Then
A — T ¢f and only if

(4) Av = X(A)v
(5) i @b = v,0, + i b5 5 kb =1,2 .-
(6) a1 v, where a = {a,} .

A conservative matrix A is called multiplicative if lim, 2 =
X(A)lim 2 for each xec¢; i.e., if each a, = 0.

COROLLARY 2. Let A be a conservative multiplicative matrix.
Then A — T if and only if A satisfies (4) and

(7) B——A.
If A is multiplicative, then each a, = 0 and condition (5) of Co-

rollary 1 reduces to (7) of Corollary 2. Since a = 0, (6) holds auto-
matically.

THEOREM 2. Let A be a conservative matriz. Then A—vQ
lim if and only of

(8) (lim x)Av = (lim, x)v for each xzec.

To establish (8) note that A(v ® lim)(x) = A(lim z)v = (lim x)Av,
and (v ® lim)(Ax) = (lim Ax)v = (lim, ®)v.

COROLLARY 3. Let A be a conservative multiplicative matrix.
Then A «— u @ lim if and only if A satisfies (4).

COROLLARY 4. Let A be a conservative multiplicative matrix.
Then A— T if and only if A— v&®lim and A — B.

For Te B(c), T is called an almost matrix if veec. A matrix 4
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is called triangular if a,, = 0 for each k& > n. We shall now examine
some triangular matrices whose commutants consist of almost matrices.

THEOREM 3. Let A be a conservative triangular matric with
a,, = L(A) for n > 1. Consider the conditions

(9) é]ank:X(A)forn>1
(10) T — A implies T is an almost matriz with v = e .

Then (9) = (10). If, in addition, ) + 0, then (10) = (9).

To prove that (9) = (10), suppose T« A. From (4) of Corollary 1,

i a0, = K(A)v, = <i ank>vn , n>1.
k=1 k=1

We may rewrite the equation in the form 3%, (v, — v,)a,, = 0, which,
along with the hypothesis «a,, = X(4) for n > 1, yields v, = v, for
n > 1.

Forn>1, (T"A") s, = M(A) and (A" T") i1 = M 2081 . Thus,
it A£0, X(4) = S5, a,;-

The result stated at the end of paragraph 2 in the next section
shows that the condition \ = 0 is necessary for (10) to imply (9).

The identity matrix shows that the restriction a,, = X(4) for
% > 1 cannot be removed.

COROLLARY 5. Let A be a conservative triangular matriz with
S A = X(A) for n>1 and a,, # X(A) for each n. Then T— A
implies T 18 a matriz.

From Theorem 3, v, = »,. From (4) with n =1 we get a,v, =
Z(A)v,. Since a, = X(A), v, = 0 and A is a matrix.

Applications. 1. Let C denote the Casiro matrix of order 1.
Then Theorem 3 of [7] follows immediately from Theorem 3 of this
paper.

2. Endl [2], Hausdorff [4], Jakimovski [5] (see [11, p. 190]) and
Leininger [6] have defined summability methods which are generaliza-
tions of the Hausdorff methods. The (H, \,; #,) transform of [5] is
defined by a triangular matrix H = (h,,) with entries h,, = ft,, b, =
(=) FNpyy oo Nty -0, ], B < m, where

“ee = 3 ‘U@ ’
[#k} ’ #n] %glc ()\% _ >\‘Ic) Ve (>\‘Z _ )\li_l)(xi — >"i+1) e ()\,1, — k‘n)
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{zt.} is a real or complex sequence, and {i,} satisfies 0 S A < N, <
e KA K ooy limyn, = 00 and A= . If A, =2, n =0, then
(H, M,; ) reduces to the ordinary Hausdorff transformations.

[4] is a special case of [5] with », = 0. [2] is the special case
of [5] with », = n + a.

Each conservative method (H, \,; #,) with distinct diagonal entries
and A, = 0 satisfies the conditions of Theorem 3. Thus, if T«
(H, 7ps #t,); T is an almost matrix with v = xe. If, in addition,
(H, N,; o) satisfies condition (1) of [7], then T « (H, \,; tt,) implies
that B is a generalized Hausdorff matrix of the same type as
(H, Mo ).

If X;>0, then (9) of Theorem 3 is not satisfied. However,
lim, 3% %.. = t% and one can establish the following: Let (H, \,; 2.)
be a multiplicative generalized Hausdorff matrix with \,>0 and g, =
Y, for all w > 0. Then Com (H, \,; #,) in I" = Com (H, \,; ) in B(e).

The commutant question for the matrices of [6] remains open.

3. Let A be the shift, i.e., a,4,., = 1, a,, = 0 otherwise. Then
Theorem 1.1 of [8] follows from Corollary 5.

4. Let A be any regular Norlund method with p,> 0 for all n.
(A matrix A is said to be regular if lim, 2 = lim« for each z¢cc.)
Then, by Theorem 3, if T+— A then T is an almost matrix with
v = A€

5. A triangle is a triangular matrix with each a,, %= 0. A fac-
torable triangular matrix has entries of the form a,, = ¢,d,, &k < n.
Let A be a regular factorable triangle with all row sums one. By
Theorem 3, if T — A, then T is an almost matrix with v = ne. This
result holds, in particular, for the weighted mean methods (see [3,

p. 57]).

THEOREM 4. Let A be a conservative trianguwlar wmatriz with
S = X(A) for each n, and a,, = X(A) for n > 1. Then the fol-
lowing are equivalent:

(1) A is multiplicative.

i) T A if and only if there ewists a scalar N = 0 such that
T =xe®lim + B, where B— A.

(i) = (ii). Suppose T «— A. By Corollary 2 we have (4) and B —
A. The hypotheses then allow us to use Theorem 3. Suppose now
that T has the indicated form. Since v = \e¢ and >3, a,, = X(4) for
each n, A satisfies (4). By Corollary 2, A — T.

(ii) = (i). Using Corollary 4 and Theorem 2 we have (8. Set
x = e* to get a, = 0 for each k, since A = 0. Thus A is multiplicative.

Note that the condition \ = 0 is not used in the proof of (i) =
(ii). However, it is necessary for the converse. For, let H denote
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the Hausdorff matrix generated by g, = n{n + 1)~', K the compact
Hausdorff matrix generated by {1,0,0, ---}. Then, since H =1 — C;
where C is the Cesaro matrix of order 1, A — H if and only if A —
C. But K+~ C. Therefore, K — H and K is not multiplicative.

The condition >*_, a,, = X(A) for each » cannot be removed. For
example, let A be the matrix defined by a, = 1, tsurron = 1 Goppon =
n+L/m n=12 ...,a,, =0 otherwise. Let T be the operator
with v,,_, =1, v, =0, and B a diagonal matrix with b,,,, = 1,
bon—1,20—1 = 0. Then Te B(c), A is regular, a,, = 1 = X(4) for any =,
and A~ T, but T is not an almost matrix.

COROLLARY 6. Let A satisfy the hypotheses of Theorem 4 with
X(A) = 1. Then the following are equivalent:

(i) A s regular.

(i) T~ A if and only if there exists a scalar N = 0 such that
T =xe@Um + B, where B — A.

In Theorem 4 merely observe that the conditions A multiplicative
and X(A) = 1 imply A is regular.

A natural question to ask is whether there exist matrices whose
commutant in B(¢) not only contains almost matrices different from
those with v = \e, but also such that Com (4) in B(c) is included in
the set of almost matrices. The answer is yes, as the following
example illustrates.

Let v be a positive nonconstant convergent sequence with v, = 0
for any =, lim,wv, # 0, v,/v,_, < 1 for all »n, and lim, v,.,/v, = 1. Let
A be the matrix defined by a, =1, a,,,, = V,/0,_, #>1, a,, =0
otherwise. We wish to show that A~ T = v ® lim + B, where B —
A. From Corollary 2 we need to verify (4) and (7).

To verify (4) for n =1, a.v, = v, = X(A)v,. For n>1, A,(v) =
Qpyn—1Vp—1 = Uy = 1(A)v,.

It remains to determine those matrices B which commute with
A. It is not difficult, using the techniques of [7], to show that
Com (A) in 4 = Com (4) in I'.

We shall now show that Com (4) = {f(4): f is analytic in D =
{z: 2] = 1}}.

For convenience set «, = ¥,../v,. Suppose B« A. Equating
(BA)..,;—, and (AB),,,_, we get, for k > 2,

b, = Apslyp = Xpiorz
n
ak—-l cee aZ

n—k+2,2 ¢

Thus we may write

(11) bn,n—k =0y Oy gttt an—k)“lc ’ 1 é k é n - 2 ’
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where A\, = byi0,/Qpy, oy k= 1.
For »r=12, ...,
1 , n—k=1 k=1
jalaz a,,, n—k=1<ngr+1
ian_l---an_r, r==%k
0 , otherwise .

(Ar)n,n—k =

Note that for » — k > 1, the only nonzero entries of A" occur on the
rth diagonal. Thus for any n, there exists only one nonzero element
in row %. With )\, any arbitrary scalar, and for any fixed =, k with
n—k>1, >X5onNi(A9),.., has at most two nonzero terms. One is
Ae(AF),,.r and the other is no07_,. Therefore,

S = (Z04) = A -

/ nyn—k

For n — k=1, n>1,

(49, = i Nty - @) = (F( A -

=0

Forn—-k=1,n=1,
S = 30 = (A

assuming >); \; converges, so that B = f(A).
Using (11), we may write N, = b, p/Xp_ 10 s =+ X, _;; SINCE ¢, =+ +
A, = Uyi,/U,, We have

1 n
“ IcZ{ ukl bnk i .
‘/71, -

Un—r
Uy

bn,n—k

§|)“Ic]:]§

Since || B|| < - and {u,} is bounded away from zero, f(z) = >,; \;27 is
analytic in D.

Conversely, if B has the form f(A) for some f analytic in D, then
clearly B commutes with A.

We conclude with a few remarks concerning conull matrices. A
conservative matrix is conull if X(4) = 0. From (4) of Corollary 1,
Av = 0. Therefore, Com (4) in B(¢) = {T e B{c): venull space of A}.
If A is a triangle, then v = 0 and Com (4) in B{(c) = Com (4) in I
If A is triangular, with only a finite number of zeros on the main
diagonal, then wvelinear span (e, e, -+, ¢,), Where n is the largest
integer for which a,, = 0. Of course, if A is the zero matrix, then
Com (A) in B(e) = B(c).
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