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The following question was raised by R. H. Bing: “Is
it true that if G is a monotone decomposition of E* into straight
line intervals and one-point sets, then E*/G is homeomorphic
to E3?”’ 1In his paper ‘“‘Point-like decompositions of E*’ he
described a possible counter example. This example has the
interesting property that it has many tame cross-sections, but
if its decomposition space is homeomorphic to E3, its set of
nondegenerate elements would have to form a wild Cantor
set, This suggests that it would be interesting to study the
connection between the embedding of a cross-section and the
embedding of the set of nondegenerate elements in the decom-
position space.

1. Introduction. Most of the terminology and notation used in
this paper is standard. The reader is referred to [1], [3], [4], and [6].

If S is a 2-sphere in E®, then by Int S we will mean the bounded
component of E*-S and by Ext S, the unbounded component.

Let G be an upper semi-continuous decomposition of E? and let
H be the set of all nondegenerate elements of G. We will say that
a set RC E® is a cross-section of G if (i) R N h is a singleton for each
he H, and (ii) the natural map P restricted to R is homeomorphism
onto P(H). We note that cross-sections exist only for certain decom-
positions. A simple example may be constructed as follows: Let a, =
1/n, for n =1,2,.-+ and let b, = — 1/n for n = 1,2, -.-.. Let the
set of nondegenerate elements of our decomposition consist of the
closed interval from (0, 1, 0) to (0, —1, 0), the closed interval from (a,,
1/2, 0) to (a,, 1, 0) for each positive integer %, and the closed interval
from (b,, —1/2, 0) to (b,, —1, 0) for each positive integer #.

II. Cross-sections of decompositions. The following question
naturally arises: How are the embeddings of a cross-section B and
P(H) related when E®/G is homeomorphic to E*? We will give some
partial results to this question.

THEOREM 1. Let G be an upper semi-continuous decomposition of E°
into points and straight line intervals pointing in only a countable
number of directions whose lengths are bounded away from zero such
that P(H) is a compact 0-dimensional set. If there exists a cross-
section C of G then C is tame.

Proof. In the special case where the elements of H point in only
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one direction, we can easily show the tameness by a modification of
the proof of Theorem 2 of [7].

Suppose that H = Jg., H, where the elements of H, are all
parallel and if h, € H;, and h,e H; where j = i then h, is not parallel
to %,. Let C, be the set of all points ¢e C such that ¢c for some
he H,. Let G, be the upper semi-continuous decomposition of E®
whose only nondegenerate elements are the elements of H, and let
P, be the natural map. Then E®/G, is homeomorphic to E® and
P,(H,) is tame in E*/G,. So by the special case C, is tame and by
Corollary 2 to Theorem 3 of [7], C is tame.

The following two lemmas will be stated without proof. Their
proofs are similar to that of Lemma A of [7] and use standard techni-
ques. Lemma B is similar to Theorem 2.3 of [3].

LEMMA A. Let G be an upper semi-continuous decomposition of
E? such that P(H) is a compact 0-dimensional set. Let he H and
suppose that there exist 2-spheres S, and S, such thot h< Int S, N Int S,
and (S, US) N (UH) = @. Then there exists a 2-spheres S such that
hcIntS, SUlntSc S, UIntS,, and if ke H then kcIntS if kc
Int S, N Int S..

LemmMA B. Let S, S, --+, S, be a finite collection of 2-sphere
whose interiors cover U H and which miss UH. Then there exists a
finite collection of 2-spheres R.,, R,, --+, R, such that R, = S, (R; U
IntR)N(R;UInt R) =@ if i+#7, and hc Int R; iff hC Int S; and h N
Int S; =0 forj <.

THEOREM 2. Let C be a wild Cantor set in E* with the property
that if » and y are distinct points of C, then there exist disjoint 2-
spheres S, and S, such that (S;US)NC = @,xvelntS, NExtS, and
yelntS,NExtS,. Then there exists a monotone decomposition G of
E?® such that C 1s a cross-section for G, E°/G is homeomorphic to EP
and P(H) is tame.

Proof. Let C be a wild Cantor set in E® with the required
property. For each x ¢ C we choose a 2-sphere S, (x) as follows:

Let N,(x) be a 2-sphere of radius 1/2, centered at z. Let Ci(x) =
{teCjt¢Int N(z)}. Then for each ye C(x) choose disjoint 2-spheres
S(y) and R(y) such that (S(y) U R(y)) N C = @, » < Int S(y) N Ext R(y),
and y ¢ Int R(y) N Ext S(y). Now choose a set ¥, ¥,, + - -, ¥. of elements
of C,(x) such that {Int R(y,), Int R(y,), «--, Int R(y,)} covers C,(x). We
now apply Lemma A to get a 2-sphere S, (x) such that z e Int Si(%),
S,(x) N C = @, C(x) < Ext Si(x) and S,(z) < S(¥;) U Int S(y;) for <=1,
2, ++-, n. Therefore, there exists a finite collection of points z,, a,, - -,
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Zno Oof C such that CclInt S(z) U Int Sy(x) U +-+ U Int S,(2,,). We
replace .7 = {S,(x), S, (%), «++, S.(%.u)} by another ecollection of 2-
spheres .7, = {T\, Ty, +++, Tiau) satisfying the conclusions of Lemma
B with respect to &%

We will now proceed to construct a sequence .7, .7, .75, ++- of
finite covers of C. Suppose that .7, has been chosen. For each
point € C we choose a 2-sphere N,(x) centered at x with radius 1/2".
We then proceed to choose .77, by the same process as in the cons-
truction of .77. We note that if y, y,e T,; N C then d(y, v,) < 1/2¥*
since T;, N Cc N,(x) for some xe C. Now for x€ C we define &, to
be N~ (T U Int T,;) where T,; is the 2-sphere in T, whose interior
contains x. Let G be the decomposition of E° whose only nonde-
generate elements are the nondegenerate elements of {h,|zecC}. It
follows easily that G is upper semi-continuous and it is clear that C is
a cross-section for G. A theorem of Harrold |[5] shows that E%G is

homeomorphic to E® and from the criteria of [3], we see that P(H)
is tame.

The Cantor set constructed in [2] is an example of a wild Cantor
set satisfying the hypothesis of Theorem 2.

We can note that if C is a wild Cantor set in E°* which does not
satisfy the condition of Theorem 2, also, if C is a cross-section of a
decomposition G whose decomposition space is homeomorphic to E®
then P(H,) is a wild Cantor set which does not satisfy the condition
of Theorem 2.
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