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Let g be a finite positive measure on a ¢-algebra .# over
a set X. As usual L”(z) denotes the space of p-essentially
bounded measurable functions and L'(z) denotes the space of
p-integrable functions. In this article we use nonstandard
analysis to give a simple description of the Mackey uniformity
m(L”, L*). The Mackey uniformity is the finest locally convex
linear uniformity on L* for which each continuous linear
functional has an L' representation. The famous theorem of
Mackey-Arens says it is given by uniform convergence on the
weakly compact subsets of L!.

Our description is simply this: Let p be a seminorm on
L*, Then p is Mackey continuous if and only if whenever g
is a finitely bounded element of the nonstandard extension
*L* which is infinitesimal, except pessibly on a set of infi-
nitesimal internal measure, then p(g) is infinitesimal.

For the reader who is unfamiliar with nonstandard analysis we
remark that 4 is L=-norm continuous at f if and only if whenever g
is a finitely bounded element of the nonstandard extension which is
infinitesimally close to f, except possibly on a set of zero internal
measure, then +r(g) is infinitesimally close to +(f). (This follows

easily from Robinson’s treatment of metric spaces.) We write f =9
if (||f — gll. is finite and) f(x) is infinitesimally close to g(z), f(x) ~
g(x), except possibly on a set of measure zero and say f is a norm-
infinitesimal from g.

This characterization uses the idea of a linear infinitesimal relation
which generalizes the nonstandard treatment of metric and uniform
spaces given by Robinson [6], Luxemburg [3], and Machover and
Hirschfeld [5]. The generalization first appeared in the authors dis-
sertation in the context of bounded holomorphic functions, see Stroyan
[7] and Luxemburg and Stroyan [4]. The reader is referred to the
references [3, 4, 5, 6] for an introduction to standard analysis which
we shall not give.

We say a measure A\ is pg-continuous if for every ¢c R* there is
a 0€ R™ so that whenever u#(E) < ¢ for Ee _, then |ME)| <e.

In the nonstandard model an internal measure (or *-measure) A
is called p-S-continuous if p(E)~ 0, for Eec*_«, implies ME) ~ 0.

A function fe *L* is #-S-continuous if the *-measure ME) = S f(x)dp(z)
E
is #-S-continuous. This is equivalent to saying that for every standard
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g€ ‘Rt = {*r: r e R*} there exists a standard é € “R* so that if p(¥) <9,
then |ME) | <e.

Lemma 1. If K & L' () is weakly compact, then K 1is L'-norm
bounded and uniformly p-continuous, that is, for every e c R*, there

ewists a 8¢ R* so that () < 8 implies ‘ S k(x)d/x(x)' <& for any ke K.
E

Proof. This standard result can be found, for example, in Dunford
and Schwartz [1].

We wish to point out here that K is uniformly g-continuous if
and only if each member of *K is p-S-continuous. To see the equiva-
lence of these conditions observe that uniform continuity is expressed
by the formal sentence

(vee RY)@de RY)(Vke K)(VE e /Z)[p(E) <o — ‘ SE kdy{ < s] )

By Leibniz principle (that ‘whatever’ is true or false for the standard
model is true or false for the nonstandard or ideal one) we have the
equivalent sentence in the nonstandard model

(Ve e *R*)(3d ¢ *R*)(vk ¢ *K)(VE e *//)[/z(E) <6— HE kdﬂj < e] .

If K is standard and uniformly pg-continuous and F,c *_# has infini-
tesimal g-measure, take e, “R*, a standard positive tolerance, and
apply the ¢ — 4 formula in the standard model to that particular e,
That is, there is a standard d,, etec. Now shift the particular sentence

(ke K)(VEe //)[p(E) < 6, — ] SE kdy} <so]

to the nonstandard model (put *’s on K and .#). Since (E,) < 4,
the integral is less than an arbitrary standard positive ¢,, hence infini-
tesimal.

Conversely, if each member of *K is p#-S-continuous and s,c °R*
is given, then taking 6 ~ 0 we see that the formula

@39 *R+)(vke *K)(VE ¢ *//)[;e(E) <b— ’ SE kd;zl <eo]

holds in the nonstandard model. But this formula has a standard
interpretation (without the *’s) which amounts to uniform g-continuity
for that particular ¢,. Since g, was an arbitrary standard tolerance
we are done.

Another simple nonstandard reformulation is as follows.
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LEMMA 2. Let & be a family of functions from a set Y into
C. Let X be a collection of subsets of Y. The uniformity of uniform
convergence on the sets of ¥ 1s characterized by the imfinitesimal
relation on *Z given by “fﬁ g if and only if f(s) ~ g(s) for all
se U [*S:Sel]”. More precisely, the entourages of that uniformity
are exvactly those subsets U of F x F for which *U 2 {(f, 9): f 2 g}
and{(f, 9): f é g} = N [*U: U is an entourage in the standard model].

Proof. The seminorms sup [|f(s) — g(s)|: se€ S] characterize this
uniformity and Luxemburg [3] has shown that the monad of the
uniformity given by {(f, 9): Mf, 9) ~ 0 for all standard semimetries
A in a gauge of a uniformity} characterizes the uniformity (in an
enlargement).

If f(s) ~ g(s) for se Y (*S: S X) then the set {|f(s) — g(s)|: s€ *S}
is a bounded internal set. In fact, since it contains only infinitesimals
it is bounded by every positively finite number and since that is an
external set it actually has infinitesimal bounds. This means that
the standard semimetrics are infinitesimal and the converse is clear.

We apply Lemma 2 to the Mackey uniformity to see that in *L=
the Mackey infinitesimals are characterized by

«r™ o if and only if SX F(@) k() dp(s) ~ SX g(@) k(@) dpu()
for every weakly compact ke cpt, (*LY)” .
The weakly compact points of *L' are given by
ept, LY = U [*K: K is a weakly compact subset of L'].

Now we apply Lemma 1 to see that the weakly compact points
of *L' are norm finitely bounded and p-S-continuous. This observa-
tion makes it clear that the infinitesimal relation:

“f = g if and only if ||f — ¢||. is finite and f(z) ~ g(x)
except on a set of infinitesimal internal measure” ,

is finer than the Mackey infinitesimals. This is because if & is merely
a L'-norm finite p-S-continuous *L' function and f(x) ~ g(x) except
on F with p(E) ~ 0, then

|, 7@ - ser@ar@| = || 7 - oran| + 17— g1l || ey

and both terms on the right side are infinitesimal so that

Skad# ~ SX gkdy .
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.M. .
The relation = is not the monad of a uniformity [3] but it is

close enough to Z to recapture it.
Suppose now that ¢: L= — C is a standard linear functional satisfy-

ing the continuity requirement that whenever f =g in *L=, then
P(f) ~ P(g). We wish to draw two immediate conclusions from this.

First, # is norm-continuous since f = g implies f = g. Second, ® in-
duces a p-S-continuous standard measure on X via
0, z¢ K

O(E) = P(1z) , where xmmziler

The next result says @ is countably additive.

LEMMA 3. If \ is a p-S-continuous finite internal measure, then
A(E) = st W(*E)), for Ec_«, is countably additive.

Proof. A is finitely additive by the additivity of st. Given
ec’R* there is a 0€ °R* so that if u(F) < J, then | ME)| <e. Now
take a partition E, of X. The sum Xu(FE,) converges so given J
there is an ] so that >, #(E,) < J, hence | MUz Fr) | < ¢ and

AUE) - 3 AEB)| s¢ .

Now we can apply the Radon-Nikodym theorem to get an L‘
representation for #. Therefore, g—continuous standard linear func-

tionals are in L', or in other words, = -continuity is compatible with
the dual pair (L=, L'>.
Let + be an arbitrary (linear or not) standard functional on *L>

. M .. M . .
which satisfies = -continuity: f = ¢ implies +(f) ~ (g). Define a
uniformity on L= by the semimetrics

() = ¥(@) |
for + standard and y -continuous.
LeEMMA 4. If ||f — g ll. is finite, then
FEZ g if and only if If — gl ~0.

Proof. If fﬂzl g, then f(x) ~ g(x) except on K with (%)~ 0, so

[17=gldp = fosir—glde+ | 17 = gll-dz~o.
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Conversely, suppose S |f—gldr~0. Foreach ne *N define the

internal sequence

&, = pf: | f(@) — g(x) | > 1/n} .
We know that for standard n e °N, ¢, ~ 0 and Robinson’s infinitesimal
sequence lemma ([6], Theorem 3.3.20 or [4], Theorem 8. 1. 4) says ¢, is

infinitesimal out to some infinite subscript, so f ¥ g.
Fix a standard functional «+, we will show that there exists a
sequence ¢, so that

U [F(n, e.): ne Nl S{(f, 9): [v(f) — v(9) | <1}

where

F(n,e) ={(f, 9):[[f —glle<n and [[f—gl. <e}.

Take mne N, since % agrees with L’-infinitesimals on the set
{(fs9:If —gll. <n} we know (Feec*R¥)[F(n,e) S{(f, 9): [v(f) —
4r(g) | <1}] holds in the nonstandard model by taking ¢ ~ 0. Therefore,
the same sentence holds in the standard model, so select such an ¢
and call it e,.

Sets of the form U [F(n,¢,): ne N] generate a standard linear
uniformity finer than that generated by the +’s. This is the finest
uniformity agreeing with the L'-norm on L“-norm bounded sets.

. . M . .
Finally, consider the collection of standard = -continuous semi-
M
norms p on L=, that is, if f = g then p(f — ¢g) ~ 0. These generate

the finest locally convex linear uniformity whose monad contains =.
This is the Mackey topology since any Mackey-continuous seminorm

. M . M . . .
is = -continuous and every = -continuous linear functional has an L*
representation.

We have shown:

THEOREM. The Mackey uniformity m(L=, L') for a finite measure
is characterized by the infinitesimal relation on *L™ given by:

“f = g if and only if ||f — g |l is finite and f(z) is infinitesimally
close to g(x), except possibility on a set of infinitesimal measure”.
Precisely, a standard seminorm p: L™ — R* is Mackey continuous

iof and only if whenever f ﬂ:l g, then p(f — g) ~ 0.
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