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An addition chain for a positive integer n is a set 1 =
«Ό < CLi < < ar = n of integers such that every element
α* is the sum aj + ak of two preceding members (not neces-
sarily distinct) of the set. The smallest length r for which
an addition chain for n exists is denoted by l(n). Let λ(n) =
[Iog2^], and let v(n) denote the number of ones in the binary
representation of n. The purpose of this paper is to show
how to establish the result that if v(n) ̂  9 then l(ri) Ξ> λ(n) +
4. This is the m = S case of the conjecture that if v{n) ̂  2m -f-
1 then l(n) Ξ> λ(n) 4- m + 1 for which cases m = 0,1, 2 have
previously been estabished. The fact that the conjecture is
true for m = 3 leads to the theorem that n = 2m(23) + 7 for
m ^ 5 is an infinite class of integers for which l(2ri) = l(n).
The paper concludes with this result.

An addition chain for a positive integer n is a set 1 = a0 < aγ <
α2 < < ar = w of integers such that every element α̂  is the sum
dj + % of two preceding members (not necessarily distinct) of the
set. The smallest length r for which an addition chain for n exists
is denoted by l(n). Let X(n) = [log2n]9 and let v{n) denote the number
of ones in the binary representation of n. Step i of an addition chain
is α< = <Lj + ak for some k <* j < ί. Since α̂  ̂  2αy ̂  2α<_1, either λ(α<) =
λ(αί_1) or λ(α<) = λία^O + 1. Step i is called a small step in the former
case and a big step in the latter case. Since α̂  <£ 2α<_1, a member
of the chain must occur in each of the half-open intervals [2fc, 2k+1)
for 0 ^ k ^ X(ri). Every time a step takes the chain from one interval
to the next it is a big step; otherwise, it is a small step. There are
X(n) big steps in the chain, and the remaining steps are small steps.
If N(di) represents the number of small steps in the chain to ai9

then the length r of the chain may be expressed as r = X(n) + N(n).
A conjecture which is equivalent to one made by K. B. Stolarsky

[10] states that if v{n) ;> 2m + 1, then l(n) ̂  X(n) + m + l. That is to
say if v(n) ̂  2m + 1, then there are at least m + 1 small steps in
any chain for n. The conjecture is true for m — 0, 1, 2. These
results may be found in [8] with the case m — 2 being part of D. E.
Knuth's Theorem C. The primary purpose of this paper is to show
how to establish the conjecture for m = 3 and to show this case leads
to the result that there is an infinite class of integers for which
l(2n) = l(n).

If a, and ak are two integers written in binary notation and placed
one on top of the other in order to add or subtract, the resultant
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figure is called a configuration and is designated by a,j/ak. The con-
figuration is divided up into slots numbered from left to right. If
aό = 101100111 and ak = 10101110, then a5\ak is as follows:

1 2 3 4 5 6 7 8 9

α
y
 = 1 0 1 1 0 0 1 1 1

a
k
 = 1 0 1 0 1 1 1 0 .

The slot numbers are written above. Slot 4 is called a 1/1 slot, slot
9 is a 1/0 slot etc. Two lemmas which involve integers written in
their binary notation are the following:

LEMMA 1. If a{ — aά + ak and if c represents the number of
carries in aό + ak, then p(α<) = v{aQ) + v(ak) — c.

LEMMA 2. If at — a3- — ak and there are s 1/1 slots in aj/ak and
a one appears in at p times under either a 1/1 slot or a 0/0 slot9 then
v{at) = v(aj) - s + p.

Two further lemmas will now be given which involve numbers
in an addition chain.

LEMMA 3. If a3- and ak are two members of an addition chain
and if X(a3-) = X(ak) + m(m ̂  0) and 2mak < aί9 then N(a3) ̂  N(ak) + 1.

Proof. Since λ(αi) = λ(αΛ) + m, there are precisely m big steps
from ak to αy in the chain, but 2mak < a5 implies that there are at
least m + 1 steps in the chain from ak to α̂  ; hence, at least one of
them is a small step.

LEMMA 4. If a5 and ak are two members of an addition chain
and if \{a^) = λ(αfc) + m(m ^ 2) and ai > 2m~'ιak + 2m~2ak, then N(a^) ^
N(ak) + 1 unless aό = 2m~1ak+1.

Proof. Suppose that there are no small steps from ak to aά.
Assume that there is at least one t such that 2 ^ t ^ m and ak+t Φ
2ak+t^. Then ak+t <̂  ak+t-i + αΛ+ί_2 ^ 2t~ιak + 2t~2ak which implies that
ak+m = α,+ ί + ( m_ ί } ^ 2—*αfc+ί ^ 2™~\2^ak + Wak) = 2 — ^ + 2- 2α f c < α y .
Thus, αfc+m < αy which implies that there is at least one small step
from ak to a5 which is a contradiction. Therefore, if there are no
small steps from ak to αy, then ak+t = 2ak+t_1 for 2 <^ t -^ m which
implies that aά — 2m~1ak+1. It follows that if a5 Φ 2w~1αfc+1, then N(dj) ^
N(ak) + 1.

Knuth's Theorem C [8] along with the four previous lemmas
will be much used in the work that follows. The statement of Theorem
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C follows with the integers being expressed in binary form.

THEOREM C. If v{n) ̂  4, then l(n) ^ X(n) + 3 except when v(n) =
4 and n has one of the four following forms: (A) n — l d 1
l cZ l where d indicates the number of zeros between the
first and second one and between the third and fourth one. (B)
n = l d 1 1 e 1 where d and e again indicate zeros and
e = d - l . (C) n = 1001- Π . (D) n = 10000111- . In these four
cases l(n) = λ(w) + 2.

The m — Z case of the conjecture will now be stated as a theorem,
and the method of proof will be described.

THEOREM 1. If v(n) ̂  9, then l(n) ̂  X(n) + 4.

Proof. Let 1 = α0 < ax < < ar = w be an addition chain for
an integer π for which v(w) ̂  9. Let a{ denote the first member of
the chain for which v(at) i> 9. Then a{ = a3 + ak where k <j since
if Jc = j 9 then α̂  = 2aό which would mean that v(a^) = v{a3). Thus,
a3- and ak are distinct members of the chain, and since v{a3) <̂  8 and
v(ak) ^ 8, it follows from Lemma 1 that 9 ^ v{a^ ̂  16. Each of the
eight cases for v{a^) must be considered, and for each of these cases
the possibilities for v{a3) and v(ak) must be considered. For convenience
the various cases will be listed as ordered triples (y(α;), v{a3), v{ak)).
There are 120 cases altogether. The case (9, 5, 4) will be considered
first.

By Lemma 1 c — 0 for (9, 5, 4), and the only possibility for a3/ak is:

+ ak = 1
α̂  = 1

As can be seen λ ^ ) = λ(αi) and, thus, there is at least one small
step from a3 to a{. Case m — 2 of the conjecture implies that N(a3) Ξ>
3 since v(a3) = 5. Thus, N(n) :> N(at) ̂  N(a3) + 1 ^ 4 .

Case (9, 4, 5) is virtually the same as (9, 5, 4) except that it is
N(ak) which is greater than or equal to 3. Since N(a3) ̂  N(ak), it
follows as before that N(n) ̂  4.

The 34 additional cases for which c — 0 are handled in the same
manner as these cases.

For c = 1 there are 28 cases for (i>(α;), v(a3), v(ak)). Since α{ ̂  2α i?

either λ(α^) = λ(αj) or λ(αi) = λ(αj ) + 1. If Mad — ̂ (αi)> then as in
the cases where c = 0 it may be concluded that N(n) ̂  4. If λ(α<) —
λ(αy) + 1, then with c = 1 the only possibility for a3/ak is:
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CLj = 1

+ ak = l

at = lO .

As previously noted a3 and αfc are distinct members of the chain, and
since λ(α, ) = λ(αfc) it follows that .W(α, ) ^ iV(α&) + 1. For those cases
where v{ak) ^ 5, N(n) ^ ^(αy) ^ N(ak) + 1 ^ 4 . When v{ak) ^ 4, some
further work is necessary.

The cases where 3 ^ v(ak) <L 4 shall first be considered. By Lemma
1 v(a3) ^ 6 since c = 1. α, =£ 2αA since χ (αy) ^ y(α*), and it follows
that either a3 — am + as where s fg m and αm =£ αfc or a3 = ak + at

where t < k. Suppose a3 — am + as where am Φ ak. Since a3- ^ 2αm,
the possibilities on the number line are:

FIGURE 1

In case (1) N(a3) ^ N(ak) + 2 ^ 4 since v(ak) ^ 3. In case (2) N(am) ^
2 for if N(am) ^ 1, then l = ao<d1< <am<aί is an addition
chain for a3 with less than three small steps contradicting the fact
that v{a3) ^ 5 implies N(a3) ^ 3. Thus, N(as) ^ N(am) + 2 ^ 4 . In
case (3) similar reasoning shows that N(am) >̂ 3, and, consequently,
N(a3) ^ N(am) + 1 ^ 4 . In all three cases N(n) ^ N(a3) ^ 4.

Suppose a3 = ak + at where t <k <j. Then at = a3- — ak. Since
c = 1 there is only one 1/1 slot in a3/ak. When a3/ak is considered from
a subtraction point of view, it follows from Lemma 2 that v{at) ^ 5
which means that N(at) ^ 3. Thus, N(n) ^ N(a3) ^ N(ak) + 1 ^ iSΓία*) +

All cases for c = 1 have been dispensed with except (9, 8, 2). In
this case v{ak) = 2 implies JV(αfc) ^ 1. If iNΓία̂ ) = 1, then it may be
concluded that all members of the chain preceding ak have two or
less ones in their binary representation. Thus, v(ak+ί) ^ 4 and v(ak+2)) ^
6. Since X(a3) = λ(αfc), this means that N(n) ^ N(a3) ^ N(ak) + 3 ^ 4 .
If N(ak) ^ 2, then iV(^) ^ 4 in the same manner as when 3 ^ v{ak) ^ 4.

For c = 2 the cases where v{a3) ^ 5, y(αfc) ^ 5, and v(a3) Φ v(ak)
are handled rather easily. As with the c = 1 cases it may be supposed
that λ(α<) = X(a3) + 1. If λ(α, ) = λ(αΛ), then iSΓ(w) ^ N(a3) ^ JV(αΛ) +
1 ^ 4 . Thus, it may be supposed that X(a3) > λ(αΛ), and the only
possibility for a3/ak with c = 2 is:
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dj = 11

+ ak = 1
cti = lOO .

If α, = am + α8 where s ^ m < j and αm =£ αfc, then there are three
possibilities on the number line:

FIGURE 2

In cases (1) and (2) N(n) :> iV(ay) ^ N(ak) + 1 ^ 4 since v(ak) :> 5. In
case (3) N(am) ^ 3 or else 1 = α0 < αx < < am < aό is a chain for
α̂  with less than three small steps which contradicts v{a3) ^ 5. Thus,
N(n) ^ N(a,j) ^ N(am) + 1 :> 4. If a3- = ak + at, then at = % — αfc.
Since c = 2, there can be no more 1/1 slots in aά\ak, and since v{a3) Φ
v(μk), aά Φ 2ak which means that ak and at are distinct members of
the chain. a3 \ak then looks as follows:

dj = 11

— ak = 1 •
at — 1 .

By Lemma 2 v(at) ^ 5 since j;(αy) ^ 5. Since λ(αft) = λ(α*),

There are 12 cases for which c = 2, y(α, ) ^ 5, v(afc) ^ 5, and
v(ak). Thus, 76 of the 120 cases for (v(a?)9 v(αy), v{ak)) have been dis-
pensed with so far. In (10, 6, 6), (12, 7, 7), and (14, 8, 8) v(a3) = v(ak),
and it is possible that d5 = 2dk. This means that dk = αt; hence, αΛ

and α« are not distinct members of the chain. Thus, the statement
that N(ak) ^ N(at) + 1 cannot be made as with the other cases where
c = 2 and v(a3) ^ 5 and v(ak) ^ 5. Some additional concepts need to
be discussed at this point which make it possible to dispense with
cases such as these.

Let I8(n) denote the minimal length of an addition chain for an
integer n all of whose members have eight or less ones in their binary
representation. A list of propositions concerning I8(n) will now be
given. The proof of one of these propositions will then be given.
The proofs of the others are similar.
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PROPOSITION 1. If v{n) = 7 and n = 111- , ίften Z8(w) ̂  λ(w) + 4.

PROPOSITION 2. i/ v(n) = 8 αrcd n = l l l , then I8(n) ^
4 unless n = 1111 -l l l l .

PROPOSITION 3. i f i (n) = 7 and n = 110 , ί/iew Z8O) ^ λ(w) + 4
= 11001 1111.. . .

PROPOSITION 4. Tf v{n) = 8 αwd n = HO , then I8(n) ̂  \(n) +
4 unless

n = 11 d «11 11 e -11- where e — dore — d— 1 .

(Note: The d and β again stand for d and e zeros respectively between
the ones.)

PROPOSITION 5. If v(n) = 6 and n = l l l

4 uniess n = l l l -111. , 111001011 • ,1111 -1001- , l l l l . -101-
or 1111...11... .

PROPOSITION 6. If v{n) = 7 and n = 10111 -01- 01 01 , then
I8(n) ^ λ(w) + 4.

PROPOSITION 7. // v(n) = 8 αwd ^ = lOll l l l . Ol Ol , then
I8(n) ^ X(n) + 4.

PROPOSITION 8. If v(n) = 8

w = 10111.. .01.. .01.. .0011.. . ,

Ol OOll Ol ,

ooii ..oi...oi ,

then I8(n) ̂  X(n) + 4.

PROPOSITION 9. / / v(n) = 8 α^d

% = 1011.. .01.. .01.. .00111.. . ,

oi...ooiii...oi... ,
ooiii...oi...oi... ,

then I8(n) ̂  X(ri) + 4.

PROPOSITION 10. If v{n) = 8 α^d n = 1010111 01 01 01 ,
then I8(n) ̂  λ(w) + 4.

PROPOSITION 11. // v(n) = 8 and n = 1011011...01...01...01,
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then I
8
(n) ̂  λ(n) + 4.

PROPOSITION 12. If v{n) = 6 and n = 11 01 01 01 01 ,

then I
8
(n) ̂  λ(n) + 4.

PROPOSITION 13. I/J;(W) = 7 a n d n = lOll Ol Ol Ol Ol ,
then I8(n) :> λ(n) + 4.

PROPOSITION 14. If v{n) = 8 and n = 101111 01 01 01 ,
then I8(n) ^ X(n) + 4.

PROPOSITION 15. Ifv(n) = Sand n=101011 01 01 01 01
then I8(n) ^ λ(n) + 4.

PROPOSITION 16. If v(n) = 8 and

n = 1011 01 01 01 -0011- ,

01...Ol .-0011...01 . ,

oi...ooii...oi...oi... ,
ooii...oi . oi...oi... ,

then I8(n) ^ X(n) + 4.

PROPOSITION 17. If v(n) = 8 and n = lOll l . Ol .Ol -.Ol
01 , then I8(ri) ^ X(n) + 4.

PROPOSITION 18. If v(n) = 8 and n = lOll Ol .Ol Ol
Ol 01 , then I8(n) ^ λ(n) + 4.

PROPOSITION 19. Tjf v(n) = 7 and n = 1011100 -111, then I8(n) ^
λ(n) + 4.

Proof. (Prop. 1) Let 1 = a0 < ax < -« < a r = n be an addition
chain for n where v(n) = 7 and n = 111- . It shall be assumed that
all members of the chain have eight or less ones in their binary
representation. Let a{ denote the first member of the chain for wτhich
v(a{) = 7 and α{ = 111 . α̂  = a3- + ak for some k <̂  j < i. In fact
k < j for if αy = ak then a{ = 2α, which would mean that v{a3) = 7
and αy = 111 contradicting the fact that α̂  was chosen as the first
member of the chain having these properties. Thus, αy and ak are
distinct members of the chain and 1 ^ v{aQ), v(ak) ^ 8. The 49 cases
for (v(a3), v(ak)) must be considered.

a{ ^ 2α^ implies that X(â ) = X(a3 ) or X(â ) = λ(ay) + 1. If v(ak) ^
5, it may be assumed that λ(α;) = X{a3) + 1; otherwise, N(n) ^ N(a,i) ^
N(a, ) + 1 ^ iSΓ(αΛ) + 1 ^ 4 . However, if λ(α<) = λ(αy) + 1, the only



236 EDWARD G. THURBER

way to obtain a{ = l l l is if aj/ak is as follows:

α,= ϊϊϊα,

α . = 111.. . . .

The arrows indicate that at least three carries are needed with this
configuration. As can be seen λ(α )̂ = λ(αΛ), and it follows that N(n) ^
N(a,j) 2> iV(αA) + 1 ^ 4 f or all cases where v(ak) :> 5. If v{ak) <̂  4 and
v(α5 ) ^ 5, then the configuration still holds, and all cases where v{a3) =
7 may be dispensed with since a5 — l l l again contradicts the
"firstness" of a{. The cases (8, 1), (6, 3), (6, 2), (6, 1), (5, 4), (5, 3), and
(5, 2) all have less than three carries in dj + ak by Lemma 1 while
at least three carries are needed in the configuration. In case (8, 2)
only two carries are possible while three are needed. In (8, 3) it may
be assumed as with case (10, 8, 3) of Theorem 1 that d3- = ak + at (see
Figure 1). at = d3 — ak, and by Lemma 2 v(at) JΞ> 5 which implies that
N(n) ^ N(d3) ̂  N(ak) + 1 ^ N(at) + 1^4. In (8, 4) it may be assumed
that ak is one of the four special types in Theorem C; otherwise,
N(ak) ^ 3 which implies N(n) ̂  N{a3) ^ N(ak) + 1^4. Since ak = 11 ,
this means that ak = 11 11 . As in (8,3) it may be assumed
that aά = ak + at, and as with (8, 3) v(at) ^ 5 unless there are four 1/1
slots in dj/ak. By Lemma 1 c = 5 in a3- + ak, and the only way to
meet all of these requirements is if aά\ak is as follows:

aj= l l l l l . l . . l . . . l . . . implies as = 11111 1 1 1

+ ak= 11011...O O . O - ak = llOll . O O O . .

.l.. l. l... at = lOO . l. l l . .

χ(ak) = λ(αt) + 2 while 22at < ak9 and so by Lemma 3 N(ak) ^ N(at) +
1 ^ 3 . Thus, N(n) ^ JV(αy) ^ N(ak) + 1^4. In (6, 4) c = 3 by Lemma
1. Therefore, aά\ak must be:

dj = 111- 1 0

+ αfc = l l l . O l

di = lllO l l .

By Theorem C N(ak) ^ 3; hence, N(n) ^ N(dj) ^ N(ak) + 1 ^ 4 .
The only remaining cases to be considered are (4, 4), (4, 3), and

(3,4). \(di) = X(dj) + 1 is not possible since at least three carries are
needed while these cases by Lemma 1 have less than two. When
either v{d3) = 4 or v{ak) = 4, it may be assumed that dά and dk are
what shall be called "special fours" meaning that they are one of
the types in Theorem C. Otherwise, N(n) ^ N(di) ̂  N(dj) + 1 ^ 4
since it may be assumed that λ(α<) = Maj) I n (4, 4) the possible
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configurations a3/ak for obtaining a{ = l l l with c = 1 are:

(1) αy = 1001... (2) αy = 101. 01 .

= IO OI
α, = lll lO

(3) α
y
= 100...01... (4) α

y
 = ll .

= oo...
Oi = lll .

In (1), (2), and (3) either a3 = am + as where am Φ ak or a3 = ak + at.
If a3 = am + a8, then ^(α,-) ^ 3 by reasoning similar to that used in
(9, 6, 5) of Theorem 1 (see Figure 2). Thus, N(n) ^ iSr(a<) ^ N(a3) +
1 ^ 4 . It shall be assumed then that a3 = ak + at. In (1) there are
two possibilities for at = a3 — ak:

+ a
k
 =

di =

«y =

101-

1110

lOO

ll

lll

•
•
• 01

•01

•10

(a) ^ = 1001... (b) αy = 1001.. .

— ak= lOl —ak = lOl

αt = 100 •• α4 = 11 .

Since c = 1, there can be no further 1/1 slots in a3-/ak. Thus, in (a)
v(at) ^ 3 by Lemma 2, and since λ(αfc) = λ(αt) and atφ ak, this
means iV(n) ^ iVί^) ^ JSΓία^ + 1 ^ N(ak) + 1 ^ iV(αf) + 2 ^ 4 . In (b)
v(at) ^ 5 by Lemma 2, and, so, N(n) ^ JSΓ(α<) ̂  iSΓίαy) + 1 ^ iSΓ(αt) +
1 ^ 4 . (2) may be dispensed with in the same manner as (1) part
(a) while in (3) since ak is a "special four" aά\ak becomes:

αy = 100.. .010.. .

— ak= 11 011

at = l l l .

By Lemma 2 y(αt) ^ 5; hence, N(n) ^ 4 as in (1) part (b).
In (4) it may be assumed that the first two digits in ak are ones;

otherwise, \{a3) = λ(αfc) + m for some positive integer m while 2mαfc <
a3: By Lemma 3 this would mean N(aj) ^ N(ak) + 1 Ξ> 3, and, hence,
N(n) ^ 4. Since α̂  and αA both start with two ones and are "special
fours", they must both have the form l l l l , but in this event
it is not possible to have c = 1 in a3- + ak.

In (4, 3) and (3, 4) c = 0 which means that there are no 1/1 slots
in a3Ίak. The possibilities for a3/ak are the following:

(1) a3 = 101 (2) a3 = 100- (3) a3 = 110- (4) a3 = l l l

+ ak = lO . +ak= l l . +ak = l + ^ = 000---

αi = l l l α̂  — 111-.. α< = l l l αi = l l l .

In (1) N(n) ^ 4 for both (4, 3) and (3, 4) by the same reasoning used
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in (4, 4) with configuration (1) part (a). The remaining configurations
will now be discussed for (4,3).

In (2) at = a3 — ak and by Lemma 2 v(at) ^ 4. Thus, N(at) ^ 3
which implies N(n) ^ 4 unless at is a "special four". Since ak = 11 ,
it may be assumed that at also starts with two ones by the same
reasoning that was used for ak in (4, 4) configuration (4). Thus, at =
l l l l . Since there can be no ones under a 0/0 slot in a3/ak

(otherwise v(at) ^ 5), there are only two possibilities for a3 /ak:

(a) aj = 1001 101 (b) as = 1000111 .

-ak= 110- 010 -ak = 111000-

at = l l . -011 . . . at = l l l l . .

In (a) N(ak) ^ 3 by arguments used before unless a& = at + au for
some u <. t <. Jc. If ak/at is examined, it may be seen that v(au) ^ 4,
χ(at) = λ(α«) and αM ^ at. Thus, iV̂ α*) ^ -^(αw) + 1 ^ 3 which implies
N(n) ^ 4. In (b) α5- is not a "special four" and, so, N(n) ^ -̂ (α<) ^
N(as) + 1 ^ 4 .

In (3) αy = l l l l since α̂  is a "special four". As in con-
figuration (4) of (4, 4) it may be assumed that ak starts with two
ones. aj/ak is then:

a,- = HOO l l

+ ak = l l OO

di = 1111. . .11. . . .

As can be seen aό > 2ak + ak, and, so, by Lemma 4 N(aj) ^ N(ak) +
1 ^ 3 unless a3- = 2αA+1. Since v(αJfc+1) = 4 and λ(αΛ+1) = λ(αΛ) + 1, it
follows as before that N(ak+1) ^ 3 unless ak+1 = ak + at for some t <̂
k. From ay/afc and the fact that ad = 2αΛ+1 it may be determined
that ak+1/ak is as follows:

ak+1 = 1100. . .11. . .

-ak= 11...00

at = 1 1 .

By Lemma 2 v(at) ^ 3. Thus, N(n) S iV(α,) ^ ^(α,) + 1 ^ N(ak) + 1 ^
iSΓ(α,) + 2 ^ 4 .

In (4) % = l l l l . since a3- is a "special four", and since v(ak) =
3, it follows that λ(α, ) = λ(αΛ) + m for some positive integer m while
2mαfc < a,-. By Lemma 3 N(a3 ) ^ JSΓ(αfc) + 1 ^ 3 which implies N(n) ^
4. Configurations (2), (3), and (4) will now be discussed for (3, 4).

In (2) it may again be assumed that a3- = ak + at, and ak =
l l l l since αfc is a "special four". By Lemma 2 v(α4) >̂ 3, and
a one can occur in at at most once under a 0/0 slot in a3/ak or else
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v{at) ;> 5. The possibilities for as/ak are:

(a) aά = 10000- (b) as = 100- 100

-ak= l l l l . . - α t = l l Oll

at = l at = l OOl

(c) α, = 100000... (d) αy = 100 1000

-ak = 11011... -ak= ll-.-OOll-.-

at = lOl at = 1...0101...

In (a) and (b) v{at) = 3, and no matter where the remaining ones in
at are placed the conditions of Lemma 3 will apply. In (d) v(at) = 4,
and, so it may be assumed that at is a "special four" in which case
at must start as at = lO Thus, the conditions of Lemma 3 also
aPply to (c) and (d), and in all four cases N(ak) ^ N(at) + 1 ^ 3 which
implies that N(n) ^ 4.

In (3) it may again be assumed as in configuration (4) of (4, 4)
that the first two digits of ak are ones, and since ak is a "special four",
this means that ak = 11- -ll . As in (4, 3) configuration (3) it may
also be assumed that a5 = 2ak+1 and that ak+1 = ak + at for some t ^
k. These facts together with aάjak determine ak+1/ak:

dj = 1100 -00 implies ak+1 = 1100 -00

+ ak = 11 11 — ak — 11 110

a{ = 1111 11 at = 1 10 .

No matter where the other one in ak+1 is placed, it can be seen that
v{at) ;> 3, X(ak) = X(at) and at Φ ak. Thus, N(ak) ^ N{at) + 1 ^ 3 which

implies N(n) ^ 4.
In (4) ak is a "special four", and the conditions of Lemma 3 will

apply unless ak = l l l . λ(αi) = X(ak) + m for some m >̂ 2 while
dj > 2m~1ak + 2m~2ak, and, so, by Lemma 4 N(a,j) ̂  N(ak) + 1 ^ 3 unless
aό — 2m~ιdkjrl. As before it may be assumed that dk+1 ~ dk Λ- at for
some t ^ k, and these facts together with dj/dk determine ak+1/ak:

dά = 111 0000 implies dk+1 = 11100

+ ak= 1111... - α 4 = l l l l . .

α, = 111...1111... αf - 1101...

N(ak) ^ iV(αί) + 1 ^ 3 ; hence, N(n) ^ 4.

In all 49 cases it has been shown that N(n) ^ 4, and, so, it may
be concluded that if v(a^ = 7 and α* = 111 , then lB(n) ^ X(ri) + 4.

In Proposition 2 ĉ  denotes the first member of the chain for which
φ.) = 8, αi = 111.. . but α< ̂  l l l l •• l l l l . The proof is then
carried out in the same manner as the proof of Proposition 1. The
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proofs of the remaining propositions are similar, and as each one is
proved it may be used in the proof of the next one. Propositions 1
to 5 are extremely helpful in the proofs of the remaining propositions
and in that part of the proof of Theorem 1 that remains. We shall
now return to the proof of Theorem 1 to demonstrate how the pro-
positions are used. As an example of the remaining cases (9, 7, 7)
will be examined.

To recall a{ is the first member of an addition chain for n for
which v(di) ̂ 9 . a,i = a3 + ak where v(a3) <Ξ 8 and v(ak) ^ 8. The
propositions concerning I8(n) are applicable to a3 and ak and all other
members of the chain preceding α*. As in (9, 6, 5) it may be assumed
in (9, 7, 7) that λ(α*) = X(a3) + 1 and X(a3) > \(ak). Also if λ(α, ) =
X(ak) + m, it may be assumed that a3 ^ 2mak or else by Lemma 3
N(a3) ^ N(ak) + 1 ^ 4 which implies N(n) ^ 4. In (9, 7, 7) c = 5, and
the possibilities for a3/ak are now listed. These possibilities are the
ways to proceed from left to right to the first 1/1 slot in a3/ak without
exceeding five carries and with the previously mentioned restrictions
kept in mind.

(1) α, = l l . (2) αy = lOl (3) a3 = 111

-\-ak = l l + ak = l l +o>k= l l l -

α, = 10 ^ = 100 a{ = 100

(4) a5 = 1011 (5) aj - 1001 (6) a3- = 1101.. .

+ ak = 1011... +ak = 1 1 1 . . . +ak= l l

di = 1000 α< = 1000 a,i = 1000

(7) aά = 1111 (8) ao = 10101 (9) as = 10011

+ ak = 1111... +α f c = 1011--- +ak = HOl

at = 1000 a, = 100000- α* = 100000-

(10) aj= lOOOl (11) ad= HOOl (12) a3- = 111010 •••

+ ak = l l l l +ak = 111- +ak = 111-

Oί = 100000 ••• α* = 100000... a, = 1000001 . .

(13) α y = 111110000...

+ α, = 11111...

a* = 1000001111... .

In configurations (3), (5), (6), (7), (9), (10), (11), (12), and (13) Pro-
positions 1 and 3 imply that either N(a,j) ^ 4 or N(ak) ^ 4. In either
event this means that N(n) ^ N{a3) ^ 4. In (1) N(n) Ξ> 4 in the same
manner unless a3 and ak both have the binary form 11001 «-l l l l - ,
but in this event it is impossible to arrange a3/ak so that c = 5. In
(2) it may be assumed that ak = 11001« l l l l and that a3 = ak +
at for some t <; k (see Figure 2). Since c = 5 there can be at most
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two more 1/1 slots in aO'/ak. There are two possibilities for aj/ak:

(a) a,- = 101 OO (b) dj = 101 OO

- α * = 11001... 1111 •-. -ak = 11001 . .1111.. .

at = 10 Ol at — 1 Ol .

In (a) it is impossible to have two further 1/1 slots in aά\ak with
zeros under them. Thus, v(at) ^ 5 by Lemma 2, and since X(ak) =
X(at) and at Φ ak, N(n) ^ N(ak) ^ N(at) + 1 ^ 4 . Configuration (b)
can be filled out a little further by realizing that the 1 can occur
under the 1/1 slot only if a^\ak is as follows:

aj = 10100 OO

- α t = 11001... 1111...

at = 111 01 •• .

It is impossible to have zeros in at under any further 1/1 slots in
a3'/ak, and, so, by Lemma 2 v(at) ^ 9 which contradicts the fact that
αf is the first member of the chain for which v{a^} ̂  9. In (4) it
may again be assumed that a5 = ak + at for some t <̂  k. c = 5 implies
that there is one more 1/1 slot in aά\ak\ hence, v(at) ^ 5 by Lemma
2. It is evident that X(ak) = X(at), and if at Φ ak, N(n) ^ N(ak) ^
N(at) + 1 ^ 4 . It is possible in this case, however, that at = ak which
means a5 = 2ak. With c = 5 the configuration would be:

α y = 101110...lO .lO lO .

+ ak = 101110...I-..01...01...

a, = 1000101. .11-..11-.-11... .

By Proposition 6 N(n) ^ iV (α̂  ) ^ 4 In (8) it is not possible that ad =
2αA, and, so, i\Γ(̂ ) ^ 4 as in (4) when at Φ ak. This concludes the
proof of (9, 7, 7).

The proof of the remaining cases is similar. Once Theorem 1 is
established it follows that the propositions concerning I8(n) are true in
general. That is l(n) may be used in the statements of all of the
propositions instead of I8(ri). The reason for this is that if an integer
with more than eight ones in its binary representation does occur in
one of the chains then by Theorem 1 there are at least four small
steps in the chain up to that integer which means that N(n) ^ 4. In
particular Proposition 19 may be restated to say that if v(n) = 7 and
n = 1011100...Ill, then l(n) ^ X(n) + 4. This leads to the result
that there exists an infinite class of integers for which l(2ri) = l(n).
This is the essence of the following theorem.

THEOREM 2. 7/%^=2m(23) + 7 where ra^5, then l(2n) = l(n) =
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Proof, n has the binary form n = 1011100 -111, and by the
restatement of Proposition 19 l(n) ^ X(n) + 4. On the other hand,

1, 2, 3, 4, 7, 14, 21, 23, 2(23), , 2W(23), 2W(23) + 7 = n

is a chain for n with only four small steps. Thus, l(n) = λ(w) + 4.
2^ = 2m+1(23) + 14 = 1011100... 1110. v(2n) = 7 implies that l(2n) ^

X(2n) + 3 while

1, 2, 4, 5, 9, 14, 23, 2(23), , 2™+1(23), 2™+1(23) + 14 = 2n

is a chain for 2w with only three small steps. Thus, l(2n) = λ(2w) + 3.
Since X(2n) = X(n) + 1 = m + 5, it follows that l(2n) = λ(2w) + 3 =

X(n) + 4 = Z(w) = m + 8.
More details of the proofs of the Propositions and Theorem 1 are

available in [12] and in private manuscripts.
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