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Several results on relations between (absolute) Nδrlund
summability and (absolute) Riesz summability are known.
Among them, Dikshit gives sufficient conditions for \N, qn\ <Ξ
\N9pn\ when the sequence {pn} is nonincreasing. The purpose
of this paper is to give sufficient conditions for \N, pn\ £ \N,
qn\ or \N, qn\ ̂  \N, pn\ when {pn} is monotone. The results
obtained here are also absolute summability analogues of Ishi-
guro's theorems and Kuttner and Rhoades' theorems which state
the inclusion relations between (N, pn) and {N, pn) summability.

1* Let {pn} be a sequence such that pn > 0, Pn — Σϊ=o Pk Φ 0.
A series Σ " = o α» with its partial sum sn is said to be summable (JV, pn)
to sum s, if tn — Σ L O Pn-kSk/Pn —* s as n —> oo, and summable (JV, pn)
to sum s, if un = Σfc=oPkSk/Pn-+s as n—> oo. It is said to be absolutely
summable (JV, pn), or summable |JV, pn\9 it_Σ\tn — tn+1\ < oo, and

absolutely summable (JV, pn), or summable |JV, pn\, if Σ\un — un+1\ <

oo. Given two summability methods A and B, we write (A) £ (B) if

each series summable A is summable B. Throughout this paper,

we write for a sequence {bn}

&- = 0(n ^ 1), Abn = 6, - 6.+1 ,

and for a double sequence {cmn}

and i£ denotes an absolute constant, not necessarily the same at each
occurrence.

On inclusion relations between two summability, the following
results are known.

THEOREM A. [1] // the sequence {pn} is nonincreasing, Qn—+ +

oo and QJqn+1 = O(Pn+1), where qn > 0 and Qn = Y,l^qk Φ 0, then

THEOREM B. [2] If {pn} is the nondecreasing sequence such that
Pn — + oo and pn = o{Pn), then (JV, pn) £ (JV, pn).

THEOREM C. [3] If {pn} is the nonincreasing sequence such that
Pn — + oo, then (JV, pn) s (JV, pn).
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392 IKUKO KAYASHIMA

REMARK. Kuttner and Rhoades' theorem [3, Theorem 2] is more
precise than Theorem C, but we refer to it in the above form.

THEOREM D. [3] If {pn} is the nonincreasing sequence such that
pn ;> K > 0, then (JV, pn) and (JV, pn) are equivalent.

The purpose of this paper is to prove the following theorems.

THEOREM 1. If {pn} and {qn} are positive and nondecreasing
sequences and if {pn+Jpn} is nonincreasing, then | JV, qn | £ I JV, pn\.

This theorem deals with the case in which {pn} is nondecreasing,
while theorem A deals with the case in which {pn} is nonincreasing.
In this Theorem, if we put pn = qn, then we obtain the following

COROLLARY 1. // {pn} is the nondecreasing sequence such that
{Pn+JPn} is nonincreasing, then | JV, pn | § ] JV, pn |.

This is an absolute summability analogue of Theorem B.

THEOREM 2. // {pn} and {qn} are positive and nonincreasing
sequences and if {pn+Jpn} is nondecreasing, then | JV, pn \ g JV, qn \.

In this theorem, if we put pn = qn, we obtain the following

COROLLARY 2. If {pn} is the nonincreasing sequence such that
n} is nondecreasing, then |JV, pn\ S \N, pn\-

This is an absolute summability analogue of Theorem C.

THEOREM 3. If {pn} is the nonincreasing sequence such that pn ^
K>0, then \N,pn\S\N,pn\.

Combining Theorem 3 and Corollary 2 we have the following

COROLLARY 3. // {pn} is the nonincreasing sequence such that
{Pn+i/Pn} is nondecreasing and pn Ξ> K > 0, then | JV, pn\ and | JV, pn|
are equivalent.

This is an absolute summability analogue of Theorem D. Theorems
1-3 are proved in §§3-5, respectively.

The author takes this opportunity of expressing her heartfelt
thanks to Professor H. Hirokawa for his kind encouragement and
valuable suggestions in the preparation of this paper.
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2* We require the foljowing lemmas.

LEMMA 1. Let yn - ΣiUoCnkxk. If
( i ) Σy=o I onJ) <£ K < co /or αZZ w, and
( π ) Σ l U K i - cH_lfi) ^ 0/or fc = 0, 1, 2, , w,

» I < oo whenever Σ?=o I 4αw I < °°

This is easily proved by the method analogous to that of the proof
of McFadden's theorem [4, Theorem (2.12)].

LEMMA 2. For m, n = 0, 1, 2, ,

Σ Qk
& 0

Qk

This is Lemma 2 in [1].

LEMMA 3. // {pn} is the nondecreasing sequence such that {pn-n/Pn}
is nonincreasing and pn-k/Pn < Pn-k-ilPn-u then

J Vn-k _ Pn-k-l \ >ψ(Pn-m _ Pn-m-1
Pn

This is due to McFadden (see [4, p. 178]).

3* Proof of Theorem 1. Let us write

tn — ^ Pn-k^k a,Πd Un =

By AbeFs transformation, we have

= ^ J Q'nkU'k y

where

nk Pn "V Qk /

To prove theorem, we must verify that the conditions of Lemma 1
with {cnk} replaced by {ank} are satisfied. Since {pn} and {gM} are
positive and nondecreasing, ank ^ 0. And if sk = 1 for all ά, then
tn = 1, ^ w = 1 for all w.
Hence,
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Therefore, it is sufficient to show that

P = Σ (αw i - an-ui) ^ 0 for A; = 0, 1, 2,

By Lemma 2, we have

—p0 - -/-(p* + —

Since {pw+1/p%} is nonincreasing, it is easily deducible that

p p

P P
•L n * n—1

Thus, if Pn-klPn — Pn-k~JPn-i ^ 0, P is nonnegative. Suppose on the
other hand that

Vn-k _ Vn-k-

Λ - 1

Since {#„} is nondecreasing,

Hence, Qk-Jqk ^ k.
Thus, we have, by Lemma 3,

p p

P \ P

P p p p p p
n—k •*• n—k—1 ι •*• w •*• n—k •*• n—1 x n—k—1

~ P P P P

= 0 .

This completes the proof of Theorem 1.

4* Proof of Theorem 2. Under the conditions of {pn}9 using
McFadden's theorem [4, Theorem (2.28)], we see that \N9 pn\ £ \C, 1|.
Hence we need only verify, under the conditions of theorem, that
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Let us write

σn = — ί — Σ s* a n ( i ™» = -77- Σ

By AbeΓs transformation, we have

. = •£- Σ (* + D M * + (TO + 1 ) g- g '
Qn

n

= Σ δ^ f̂c >
fc=0

where

6., = (* + ! ) ^ f o r 0 ^ jfc <
Qn

( ^ + ^ for fc = n .
Qn

For our purposes, it is sufficient to show that the conditions of
Lemma 1 with {cnk\ replaced by {bnk} are satisfied.

Since {qn} is positive and nonincreasing, bnk ^ 0. And if sk = 1 for
all k, then σn = 1, un = 1 for all n.
Hence,

j\ ±j

Therefore, it is sufficient to show that

θ 4 (bni - h-lti) ^ 0 for k = 0, 1, 2,

For 0 ^ k ^ ?ι — 1, we have

Qn i=

Q
^-! - (Qu-ι - kqk)}

Since {g%} is positive and nonincreasing,

Qfc-i ^ fc?*-i ^ ^ ^ and ~ —
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Therefore, we have Q ^ O . For k — n, since bnn ^ 0, we have Q =
bnn ^ 0. Hence, we have Q ^ 0 for k = 0, 1, 2, - ., n.

This completes the proof of Theorem 2.

5. Proof of Theorem 3. Consider Theorem A for pn = qn. Then,
by our assumption,

0 <£ ^ 2 <Ξ — — ^ — .
Pn + lPn + l Pn + 1 •**•

Therefore, we have Pn/pn+1 = O(Pn+1).
Thus, using our assumption, we see that the conditions of Theorem
A are satisfied for pn = qn.

Hence, by Theorem A, we have | JV, pn\ § \N, pn\.
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