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In this paper, the Preston-Vagner theorem on represen-
tation of inverse semigroups is extended to a class of uniform
inverse semigroups. In this connection the notion of I'-uni-
formity on an inverse simigroup is introduced which is a
modification of the congruence uniformity defined by a set of
idempotent separating congruences on the inverse semigroup.
Such an inverse semigroup is called a ^-inverse semigroup.
First, it is proved that a ΣΛnverse semigroup is complete if
and only if all its maximal subgroups are complete and it is
compact if and only if the set of its idempotents is finite and
all its maximal subgroups are compact. Next, the symmetric
^-inverse semigroup of bi-Lipchitzian maps between E7-open
subsets of an uniform space is defined and finally, it is shown
that any ^-inverse semigroup can be embedded isomorphically
into a symmetric ^-inverse semigroup.

l J-inverse semigroups. We refer to [1] for information on
semigroups and to [2] for uniform spaces. We shall always consider
symmetric Hausdorff uniformities. Let (X, tt) be a uniform space where
tt = {Uk; k e K). A subset Y of X is said to be ί7-open if x e Y=>
Uk{x) c Y for all k e K. A ϊ7-open subset is both open and closed. The
set of all [7-open subsets of X is closed for the operations of union
and intersection and contains the null set φ and X. A mapping a of
X into itself is called Lipchitzian if (x, y)e Uk=> (xa, ya) e Uk. If a
is a Lipchitzian map and if a"1 exists and is also Lipchitzian, then a
is called a bi-Lipchitzian map.

DEFINITION 1. Let S be an inverse semigroup. A symmetric
Hausdorff uniformity tt = {Uk; k e K) is called a ^-uniformity on S if
the following conditions hold:

(Σ1) Uk^^ for each k e K.
{Σ2) The maps λα:#—>ax and pa:x-+xa of S are Lipchitzian

maps.
(Σ 3) The map α-^α" 1 of S is Lipchitzian.
If tt is a I'-uniformity on S, then (S, tt) is called a .J-inverse

semigroup.
In the sequel, (S, tt) denotes a ^-inverse semigroup.

PROPOSITION 2. Multiplication in a Σ-inverse semigroup (S, tt) is
uniformly continuous.

Proof. Given UkeU there exists UkieU such that Ukι°Ukl £ Uk.
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Then, (x, x') e UH (y, y') e UH - (xy, x'y) e Uh, (x'y, x'y') e Uh (by Σ 2)
'y')eUkloUkl^ Uk.

PROPOSITION 3. The set E of idempotent of (S, U) is a closed,
discrete subset of S.

Proof. E is discrete by Σl. lίxeE, then Uk(x) ΠEΦ0 for every
k e K. Let Ukl e l l be such that Ukl ° Ukl ° Uh fi Uk. Since Ukl(x) Π
E Φ 0 , there is βfcl e £7 such that (α?, efcl) e Ϊ7fcl. Then, (a?efcl, efcl) e C/̂ ,
(a;2, xekl) e Ukl by 2" 2 and so (x\ x) e Uh o ?7fci. Z7tl S Uk. This is true
for all ke K. Hence x = x2 eE and E is closed.

PROPOSITION 4. Lβέ Γ 6e cm inverse snbsemigronp of a Σ-inverse
semigroup (S, U). Then T with the relative uniformity is a Σ-inverse
semigroup.

Proof. The relative uniformity for T is given by Uτ = {Uk Π T x Γ,
& G if} which satisfies the conditions Σ 2 and Σ 3 of Definition 1. To
show that Σl is satisfied, it is enough to observe that for a, be T,
a3έ?b in T if and only if a£έfb in S.

The following can easily be proved.

PROPOSITION 5. The maximal subgroups He(e e E) of S are closed.
They are topological groups for the relative topology. Further, if e£3?f,
then He and Hf are homeomorphic.

We now give a necessary and sufficient condition for the com-
pleteness and compactness of a Σ-mverse semigroup (S, U).

THEOREM 6. A Σ-inverse semigroup (S, U) is complete if and only
if all its maximal subgroups are complete.

Proof. If S is complete, then the subgroup He are all complete,
being closed subsets of S. Conversely suppose that each He is complete.
Let {xk; k e K] be a Cauchy if-net in S. Then, given ke K, there exists
kxeK such that (xk,f xk,,) e Uk for all k'f k" *>• kt. Hence we can assume
without any loss in generality that any given Cauchy if-net is contained
in a single <%* class. Suppose that the Cauchy ίΓ-net {xk} is contained
in the £{f class Re f) Lf, (e,feE). Let z be any element of Re Γi Lf.
Then {XjcZ"1} is a Cauchy if-net in He and so converges to some point
y e He. Then, we have \imkeK xk = yz. For, given UkQ, there is a kt e K
such that (xkz~~\ y) e UkQ for all k^kt and so (xkz~% yz) — (xk, yz) e
Uk (by Σ2) for all k^k^ and \\τcίk&κxk — yz. Thus S is complete.
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THEOREM 7. A Σ-inverse semigroup (S, U) is compact if and only
if E is finite and each He is compact.

Proof. If S is compact, it follows that He is compact and E is
finite. Conversely, suppose that E is finite and each He is compact.
We first show that for any aeS, Ha is compact. Let e,feE be such
that a e Re Π Lf. Then Ha = Hea and x —* xa is uniformly continuous
and so Ha is compact. The distinct ^^-classes of S are the nonempty
sets Re ΓΊ Lf(e,feE) and these are only finite in number because E
is finite. Thus, S is a union of finite number of compact sets Ha(a e S)
and so is compact.

A natural example of a ^-uniformity on an inverse semigroup S
is given by the congruence uniformity defined by a set {θk; k e K) of
idempotent separating congruences on S such that given k19k2e K there
exists kzeK such that ΘH c 0fcl Π θk2 and Π*e* 0* = τ> where the uni-
formity is given by the sets Uk = {(x, y), x, y e Sjxθky}. In fact, we
have

PROPOSITION 8. If (S, U) is a Σ-inverse semigroup with idempotent
surroundings (i.e., Uk°Ukci Uk) then each Uk is an idempotent sepa-
rating congruence on S.

2. Symmetric ΣΛnverse semigroup* Let (X, U) be a uniform
space. Let ^(X) be the symmetric inverse semigroup of all partial
(1 — 1) transformations on X. Let Ω(X) be the subset of <J^{X) consisting
of all partial bi-Lipchitzian maps between C/-open subsets of X. Ω(X)
is not empty as it contains the null map and identity map of X.

PROPOSITION 9. Ω(X) is an inverse subsemigroup of ^(X).

Proof. If a e Ω(X), then or1 also belongs to Ω(X). Thus it is
enough to show that Ω(X) is a subsemigroup of ^J^(X). Let a, β e Ω(X)
and

A = F(a) Π Δ(β) .

(Note: Δ{a) denotes the domain and V{a) the range of the partial map
a). Then A is C/-open. If A = 0 then aβ = 0 e Ω(X). If A Φ 0 , let
Ax — ACT1, A2 = Aβ. A1 is [/-open, since, x e Al9 (x, y)e Uk=>ye Δ{d),
(xa, ya) e Uk=>yaε Uk(xa) aA=>yeA1. Similarly, A2 is also [7-open.
It is clear that aβ is a (1 — 1) Lipchitzian map of A onto B whose
inverse β~ιa~ι is also Lipchitzian. Thus aβ e Ω(X). Hence Ω(X) is an
inverse subsemigroup of ^(X).

The uniformity on X induces in a natural way a uniformity on
Ω(X) which is defined as follows.
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DEFINITION 10. For each k e K let

Ui = («, β)9 <*,βe Ω(X)ja^fβ, (xa, xβ) e Uk

for all x e A(a), (ya~~\ yβ"1) e Uk for all y e F(a)} .

Lettt* = {Uϊ keK} .

It is easily verified that 11* defines a Hausdorff uniformity on
Ω(X) such that t/J c 2^ for all Λ 6 K.

PROPOSITION 11. Left and right multiplication in Ω(X) are
Lipchitzian maps.

Proof. Let a, β, y e Ω(X), (a, β) e Uk*. Then aSίfβ, {xa, xβ) e Uk

for all x e A(a) and {yar1, yβ~ι) e Uk for all y e V(a). Let C = F(α) Π
Δ(i) = F(/3) n 4(τ), Ax = Cα~ι, Λ = Cβ"1 and -B = C7. All these subsets
are ?7-open. Now, xeAλ=>xe A(a) => (a α:, xβ) e Uk => xβ e Uk(xa) £
C => a? G A2 => Aj. S A2. Similarly A2 £ A* and so Ai = A2. We have
aiS^βl since 4(<ry) = Ai = A2 = z/(/37) and V(ai) = B = V(βi). Since
α, β, Ύ are bi-Lipchitzian maps, it follows that (xay, xβy) e Uk for all
x 6 A(ay) and d/7"1^"1, yy^β"1) 6 Z7* for all 7/ 6 V(ay). Thus (0:7, /S7) e Z7?
and multiplication on the right by elements of Ω(X) is a Lipchitzian
map. Similarly, we can show that the left multiplication is also a
Lipchitzian map.

PROPOSITION 12. The map a —> arι of Ω(X) is Lipchitzian.

Proof, (a, β) e Uk* ^> a^fβ, (xa, xβ) e Uk for all x e A(a) and (yar1,
yβ-1) e Uk for all y e F(a)-=>a~1

c^β~1, (ya~\ yβ"1) e Uk for all y e A(a~1) =
V(a) and (xa, xβ) e Uk for all x e V(a~x) = A(a) <=> (a"1, β"1) e Uk*.

From the definition of the uniformity IX* and of Propositions 11
and 12 it follows immediately that (Ω(X), U*) satisfies the conditions
Σ 1-Σ 3 of Definition 1 and thus we have

THEOREM 13. (Ω(X), II*) is a Σ-inverse semigroup.

DEFINITION 14. (Ω(X), U*) is called the symmetric ^-inverse
semigroup of partial bi-Lipchitzian maps on (X, U) or shortly, the
symmetric I'-inverse semigroup on (X, II).

THEOREM 15. Let (X, VL) be a complete uniform space with idem-
potent surroundings. Then (Ω(X), U*) is complete.

Proof. Let {ak, keK} be a Cauchy i£-net in Ω(X). Without loss
in generality we can assume that the Cauchy iΓ-net is contained in a
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single <^-class. Let A be the common domain of aky ke K and B
their range. We now define a map a: A —> B as follows. Define
xa = limkeKxak, xeA. Since 5 is closed and {xak} is a Cauchy K-net
in 1?, we have xaeB. a is a well defined map of A into B. Let
a j e i with xa = ya. Then l i m ^ ^ a ^ = \imkeKyak. Given C40 we
can find k^eK such that (xak, xa) e C7fco, (?/αfc, ya) e Uko for all k >̂ Λlβ

Thus (#0^, yxk) e Uko Z7*0 = Uko for all & ̂  Jfclβ Since a*1 is Lipchitzian,
(xakak\ yaka.-ζγ) e Uko for all k^kt i.e., (α?, y) e Uko. Since £7^ is arbitrary,
we have x — y and so a is (1 — 1). We next show that a is onto. If
y € By then {yccζ1} is a Cauchy f-net in A and hence converges to a
point xeA. Then #α: = 2/. For, given Uko e U, there exists kte K such
that (#, 2/tfΐ1) € Z7Ao for all k^kγ and so (xaky y) e Ϊ7fco for all k^tk^
Thus 7/ — limkeK'xak = &α: and <x is onto. The maps α and or 1 are
Lipchitzian. For, let (x, y) e J7fco, x, y e A, fc0 € if. Then (α?αfc, i/αfc) 6 Uko

for all ke K. Since α α = limfcei5: a?αt, ya = lim^β^ i/α:λ we can find kλe K
such that (αα, 0?^) 6 C40, (̂ /α, |/α4) e Uk 0 for all k^k^ Hence (xa, ya) e
C40° t/jfco" ^*o S t/*0 Thus a is Lipchitzian. Similarly we can show that
αΓ1 is Lipchitzian and so a e Ω(X). I t now remains only to show that
a — limkBKak in Ω(X). Since {ak, fee if} is a Cauchy net, given Uζ
we can find kλe K such that (ak, ak) e UkQ for all Λ, Λ' ^ Jfcx and so
(a?αΛ, xak) e Uko for all k, kf ^ &!• Since xa = limkeκxak we can find
k2e K such that (xa, xak) e UkQ for all k ^ /c2. Let kz e K be such that
&3 ^ fei, fc2. Then (xa, xak) e Uko, (xak9 xak) e Uko, (xa, xak) e Uko for all
k 2̂  k3. Similarly, we can show that if yeB, then (ya"1, ya^ξ) e Z7fco>

(yar\ yocς1) e Uko, (yak\ yak^) e Uko for all k ^ kz and so (a, ak) e Uζ for
all k ^ &3. Thus a = limkeKak and so Ω(X) is complete.

3* Representation of 2^ in verse semigroups* We now consider
the representation of a J-inverse semigroup by partial bi-Lipchitzian
maps. Let (S, U) be a ^-inverse semigroup and (Ω(X), U*) the sym-
metric Σ-mverse semigroup on (S, II). Let <o be the right regular
representation of S in κJ^(S). We now have

PROPOSITION 16. Sp is a closed inverse subsemigroup of(Ω(X), U*).

Proof. The set Sa(a e S) is [/-open, for, if xeSa and if (a?, 6) e Uk

for some & e iΓ, then &Jg^δ and Sb = SxS Sa and so b e Sα. The map
Pa' Sΰ1 -+ Sα is (1 — 1) Lipchitzian between [7-open sets whose inverse
Pa1 is also Lipchitzian and pa e Ω(X). Thus Sp c Ω(S) and £fy? is an
inverse subsemigroup of Ω(S). Now, let ηe£ρ. Then C7fc*(?7) Π Sp Φ φ
for every ke K. Let j e ί be such that U3-° U, £ Z7*. Then we can
find α, e S such that (37, jθβy) e Uf. Then J(^) = Saj1, V(rj) = S%. Let
e, = α. αj 1 and 6 - e # . Then (17, ^ .J e Of =» (e^, e^ β i ) = (6, αy) e £/> =>
b£ίfa5. Hence S6""1 = Saj1 = 2/(57) and S6 = Sαy = F(i?) and so ~η£{fρh.
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Further, if x e J(η), then (xη, xa3) e Uί9 (xb, xa3) e U3 and so {xη, xb) e
UjO U3 £ Uk. This is true for all k e K and so xη = xb for all x e A{ή).
That is η — pb and Sp is closed.

We now have

THEOREM 17. A Σ-inverse semigroup (S, U) can be embedded iso-
morphically in a symmetric Σ-inverse semigroup.

Proof. The map p: S—+ Ω(S) given by a —> pa is clearly an algebraic
isomorphism of S onto Sp £ fl(S). To prove that it is a uniform
isomorphism we will show that for α, b e S, (α, b)e Uk<=> (pa, ph) e Z7fc*.
Now (α, b) 6 Uk=^a£έ?b=*pa£ίfρh. If a? e Sα"1, i/ e Sα, then (α, b)eUk=>
(xa, xb) 6 ί/fc and (^/α"1, ^/δ"1) e Uk and thus (ft, ft) e C7fc*. Conversely
(Λ, ft) e ^ * =>Sa = Sb, So,"1 = Sb^^a^fb. So, if α, δ e i?e n ^/, then
(α, 6) = (eft, eft) 6 £7*. Thus ^ is a uniform isomorphism of (S, U) onto
a closed ^-inverse subsemigroup of (Ω(S), U*).
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