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Pencils that contain a definite matrix (cZ-pencils) have been
characterized in several ways. Here ^-pencils will be charac-
terized by the property of the set L = {(ai9 bi)} ^ R2 if S and
T are simultaneously congruent to diagCa*) and diag(&i), respec-
tively. This way one can describe all definite and semidefinite
matrices in a c£-pencil. Similarly one can characterize all
pencils that contain semidefinite but no definite matrices (s.d.
pencils). The explicit condition on L for cZ-pencils is then used
to reprove the theorem that two real symmetric matrices
generate a cZ-pencil iff their associated quadratic forms do not
vanish simultaneously.

DEFINITION 1. If S is symmetric we define Qs = {x e Rn \ x'Sx = 0}.

DEFINITION 2. For real symmetric (r.s.) matrices S and T one
defines the pencil P(S, T) = {aS + bT\a, beR}.

DEFINITION 3. (a) P(S, T) is called d-pencil if P(S, T) contains
a definite matrix.

(b) P(S, T) is called s.d. pencil if P(S, T) contains a nonzero
semidefinite, but no definite matrix.

The following theorem is classical:

THEOREM 0.1. If P(S, T) is a d-pencil then S and T can be diago-
nalized simultaneously by a real congruence transformation.

The question whether a given pencil of r.s. matrices contains a
positive definite matrix was treated in chronological order by Finsler
[6], Albert [1], Reid [12], Hestenes and McShane [9], Dines [5], Calabi
[4], Taussky [13], Hestenes [8], Theorem 3, and Berman [3].

Their main results are the following:

THEOREM 0.2. Let S and T be r.s. n x n matrices. If n^ 3,
then the following are equivalent:

( i ) P(S, T) is a d-pencϊl,
(ϋ) QsΓ(Qτ = {0}, and
(iii) trace YS = trace YT = 0 for Y positive semidefinite implies

r=o.
The equivalence of (i) and (ii) was proved by Calabi [4], while

Berman [3] showed the equivalence of (i) and (iii).

δβl
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Before Calabi [4] only condition

(ii') x'Sx = 0 implies x'Tx > 0

was generally used instead of (ii). And thus only the fact that (ii')
implies (i) was proved.

In view of Theorem 0.1, to characterize d-pencils means to charac-
terize the sets L = {(ai9 b{) \ i — 1, , n) ϋ R2 for which there exist
λ, μ € R with Xdi + μbi > 0 for all i.

THEOREM 1.1. P(S, T) is a d-pencil iff S and T can be simul-
taneously diagonalized by a real congruence transformation X: X'SX —
diag(α ), X'TX — diag^), and in case that there are indices i, j with
a{aj < 0 we have

(a) max —*— < max -^- and fy < 0 whenever α̂  = 0 ,
<π>o α$ H<° a^

or

( b ) min —i- > min —i- and bι > 0 whenever α* = 0,
n>° a{ H<° ĉ

while in case that all aι have one sign we have

( c ) either bi < 0 whenever a{ — 0 or b{ > 0 whenever α̂  = 0 .

Proof. If P(S, T) is a d-pencil, then by Theorem 0.1 the matrices
S and T can be diagonalized simultaneously by a real congruence
transformation: X'SX= diag(a^), X'TX= diag^). Furthermore, there
exist λ, μeRs.t. XS + μT = X'diag(λαί + μ&*) X is positive definite.

Hence the set L — {(α̂ , b^ \i = 1, , n} g Rz must lie in an open
half plane of J?2 and it follows that either (a) or (b) or (c) must hold
for L.

Conversely if S and T are simultaneously congruent to diag(a;)
and diag(δί) then in case of (a) all points (aif bi) e R2 lie "below" any
line La thru zero that has slope maxtt.>0 &</(&< < a < maxαί<0 bja^ In
case of (b), they all lie "above" any such line La with minαί>0 bjai >
a > mintt{<0 bjai and in case of (c) they all lie to the "right" or to the
"left" of any line La where either

max —ι- < a < oo or — oo < <χ < min _ i .
ai>° aι «i>o ctί

Thus the set L lies in an open half plane and hence there exist
λ, μeR s.t. λα̂  + μbi > 0 for all i. Thus P(S, T) is a ώ-pencil.
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Next, if P(S, T) is a cί-pencil we will explicitly describe the
setikP = {(λ, μ) \ XS + μTpos. def.} S R2 and determine the positive
semideίinite matrices in P(S, T). The sets M+ and its closure M =
{(λ, μ) \XS + μTpos. semidef.} have been previously characterized as
convex cones and this fact together with properties of quadratic forms
have been used to prove the equivalence of (i) and (ii) in Theorem 0.2
(Hestenes [8]). Hestenes [8] moreover treats related questions for
positively elliptic pairs of quadratic forms in Hubert space.

THEOREM 1.2. Let P{S, T) be a d-pencil and let S, T be simul-
taneously congruent to diag^) and diag(&;).

Then with (a), (b), and (c) from Theorem 1.1 we have
(1) XS + μT is positive definite iff

in case of (a) — (max—*-) < — < -(max-^-) andf (a) — (max—M < — < -ίmax-^-)
V <H>O α* / μ \ «»<o a{ /

in case of (b) — (min —*-) > — > — (min-M while
\ α;>o α$ / μ \ ai<o a{ /

in case of (c) if all a^ are nonnegative

— (max —-M < — < 0 if bi < 0 whenever a{ = 0
\ «ί>o aι / μ

r

0 < — < — (min AΛ if b{ > 0 whenever ai = 0

!, if all at ̂  0, we

— (max — j > — > 0 if b{ < 0 whenever α̂  = 0

while

0 > — > — (min—M if bi > 0 whenever a{ = 0 .(

(2) λS + λΓ is positive semidefinite and not definite iff in each
ease respectively, X/μ is equal to either one of the endpoints of the
intervals under (1).

Here we set
oo if a > 0

Proof. The proof follows from Theorem 1.1 and by the geometry
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of R2. Concerning (2) one can say that if X/μ is an endpoint of an
appropriate interval in (1), then XS + μT is positive semidefinite of
rank n — r ^ n iff r = | {j \ bi/ad = X/μ} \.

As corollaries we observe that

COROLLARY 1. If in Theorem 1.1 the strict reverse inequalities
hold in (a) and (b), or (c), respectively, then μS + XT is indefinite for
any (λ, μ) Φ (0, 0). And then μS + XT has at least rank 2 for any
(λ, μ) Φ (0, 0).

Before characterizing s.d. pencil we will quote a simplified version
of the canonical pair form theorem for nonsingular pairs of r.s.
matrices.

DEFINITION 4. A pair of r.s. matrices S, T is called nonsingular,
if S is nonsingular.

THEOREM 1.3. Let S and T be a nonsingular pair of r.s. matrices.
Let S^T have real Jordan normal form diag (Jl9 , Jm). Then S and
T are simultaneously congruent by a real congruence transformation
to diag (SiEi) and diag (SiE^) respectively, where S; = ± 1 and E{ denotes

1° Λ
the square matric of the same size as Jifor i = 1, , m.

U 0/
The relevant notation has recently been described in Uhlig [15].

There it was shown that the canonical pair form just described is a
finest simultaneous block diagonalization.

Note

j

for E =
\

that

Ό

vl '

if J =

• X \

0/

aE

IX 1

\o

rith dim

+ bEJ =

•

' λ

E --

1°-I
\a

0

1

\
I is a
/

dim J

f bX

J o r d a n b lock for XeR t h e n

^ 3 w e h a v e

• ' • • * •

b' 0/

Hence aE + bEJ is indefinite for all (α, δ) Φ (0, 0). The same holds
for any J corresponding to an eigenvalue λ = a + βi$ R. With this
in mind we can characterize s.d. pencils:

THEOREM 1.4. Let S, T be a nonsingular pair of r.s. matrices of
dimension greater than 2.
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Then P(S, T) is a s.d. pencil iff either S and T are simultaneously
congruent to diag(αί) and diag^) with bjai Φ bjjaά for at least one
pair of indices {i, j) and we have

(a') max —ι- = max A. or (b') min A. = m i n A. ,

H>° a{ H<° a{ H>° cii ai<° ai

or S and T are simultaneously congruent to

diag (εE, -, εE, εk+u , εj9 αi+1, , an)

and

diag (εEJ, , sEJ, ek+ιa, , e. α, 6i+1, ••-,&„),

ivhere J=\ ), E = I ); ε, ε4 = ± 1 , aeR, bt Φ aat and
\0 a) \1 0/

c, 6Z — α:αz αίZ /̂ αvβ ίfcβ same sign for I = j + 1, , n.

Proof. We recall that P(S, T) is a s.d. pencil if there is a semi-
definite but no definite matrix in P(S, T).

If S and ϊ7 can be diagonalized simultaneously to yield diag(α )
and diag (6,), then P(S, T) is a s.d. pencil iff L = {(ai9 h)} S R2 lies
in a closed half plane, but in no open half plane of R2, nor on a line
thru 0; which is the case iff (a') or (b') holds. (Note that since S is
nonsingular we have α* Φ 0 for all i.)

If P(S, T) is a s.d. pencil and S and T cannot be simultaneously
diagonalized, then the real Jordan normal form Jo of S^T cannot contain
a Jordan block of dimension greater than two for a real eigenvalue,
nor can S~XT have complex roots as we have observed in the sequel

d ^ ίof Theorem 1.3. Butfor/=( land^^ί )wehB,veXE+μEJ=
\0 a) [l 0/

0 λ + μa\
is semidefinite iff λ + μa = 0. Hence if there are

λ + μa μ j
several 2-dimensional blocks in JQ they must all correspond to the same
eigenvalue aeR and they all must carry the same sign ε. The signs
of the one-dimensional blocks corresponding to the same eigenvalue a
cannot be specified since e<(λ + μa) = 0 independent of ε4 = ± 1 , but
for one-dimensional blocks in Jo not corresponding to a, i.e., if bt Φ aaly

then we must have that εμ and Xat + μbt = μ(bt — aat) all have the
same sign for I = j + 1, , n. If μ = 0 we conclude that if XE +
μEJ — XE is semidefinite then X — 0. Thus μ cannot be zero. And
the theorem is proved, since the converse is obvious in this case.

Finally we will apply Theorem 1.1 to give a new elementary proof
of the equivalence of (i) and (ii) in Theorem 0.2.
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For this we need a theorem of Greub and Milnor [7, p. 256]:

THEOREM 2.1. Let S, T be r.s. matrices of dimension greater than
2. If Qs Π Qτ — {0}> then S and T can be diagonalized simultaneously
by a real congruence transformation.

This Theorem was also proved by Majindar [11], Kraljevic [10],
Wonenburger [16], Au-Yeung [1], and the author [14].

Proof, [(i) and (ii) of Theorem 0.2 are equivalent.] That (i) implies
(ii) is obvious since for definite matrices U we have Qv = {0} and clearly
for any UeP(S, T) we have Q , 3 Q 5 Π Qτ-

If (ii) holds, then by Theorem 2.1 the matrices S and T are
simultaneously congruent to D1 = diag(α ) and D2 — d i a g ^ ) . We are
going to show that

Σ aiχ\ = Σ bi%2i = 0 implies α?< = 0 for all i

cannot hold unless either (a) or (b) or (c) of Theorem 1.1 is the case.
In the case that, say, all a{ ^ 0 and (c) is violated, then we

have aι = aό = 0 for i Φ j , while bι ^ 0 and bj ^ 0. With e* denoting
the ith unit vector we then have

0 Φ x = e, + y—j- eό e QD Π QD2 if bj Φ 0 ,
— Oj

while else eά e QDl Π QD2, hence Qs Π Qτ ^ {0} as well.
In the case that there are positive as well as negative a{ and if

both

max —i- ^ max —i- or δ̂  ̂  0 for some α̂  = 0
L «i>o α^ H<O aι J

max i ^ max i
L «i>o

and

min —i- ^ min —i- or 6̂  < 0 for some α* = 0
L <*;>o α { «i<o α^ J

hold, i.e., if both (a) and (b) of Theorem 1.1 are violated, then we will
show that Q = QDl Π QD2 ̂  {0} ^^d then the equivalence of (i) and (ii)
will be proved.

We now go into subcases:
If both bi ^ 0 and bj ^ 0 for a{ = a3- = 0, then QDι n QD2 Φ {0} as

we have just seen.
If both maxα { > 0 &</«< ̂  m a x s < 0 δi/α* and δ, ^ 0 for some α̂  = 0 hold,

then we assume without loss of generality that the indices in question
are 1, 2, 3, respectively, i.e., b1jaι ^ 62/α2 where ax > 0, a2 < 0, and α3 = 0,
while 63 ^ 0.
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If 63 — 0, then e3 e Q. If b1jd1 = &2/α2, then e1 + (V—aJa2) e2 e Q.
Otherwise with x = (1, V — aja2, a,0, , 0) we get

Σ €biX\ = αx — «i —— = 0 independent of a ,
α2

and

Σ hx\ = 6, - 5Ϊ5I + 63α
2 .

α2

Now by assumption δx — (aja2) b2 > 0 and δ3 < 0, hence there is a
real α s.t. Σ M* = 0 as well, and consequently Q Φ {0}. If both
minα i > 0 bi/cti ^ minα i < 0 biffy and 6̂  ^ 0 for some a{ — 0 hold, then a
similar argument applies.

Finally assume both

(*) max A ^ max A. and minA ^ min A hold .
<*;>o di «i<o α^ «i>o di di

If in (*) there is an equal sign, say bjdj. = b2/d2 with dι > 0, α2 < 0, then
as above ex + (V—aja2) e2 e Q. Thus the only case to remain to be
proved is if both inequalities in (*) are strict. For n ^ 4 assume that
the indices in question are 1, 2, 3, 4; i.e., bja^ > b2/d2 with αL > 0, α2 < 0
and &3/α3 < 64/α4 with α3 > 0, α4 < 0. Then with x = (1, (i/—djd2), a,
(i/—Oβ/αjα, 0, , 0) we have

Σ αi^l = ai — ai + ^2(α3 — as) — 0 independently of α ,

and

Σ b,x\ - 6, - ^ L b2 + a2ίbs - bt-Zs).
d2 \ a4 /

By assumption 6X — (αi/α2) 62 > 0 and δ3 — δ4 (α3/α4) < 0. Thus a e R can
be chosen s.t. Σ M5 = 0.

For n = 3 we may WLOG assume that min t t ί > 0 &*/»< = maxα.>0 bjdi =
δi/αi. Then (*) reads like /̂cî  > 62/α2 and bjdt < 63/α3 with αL > 0;
«2, «3 < 0. Then with x — (1, V~dxald2, V'—(hβM w e have

Σ d,x\ = aί- a,{a + /3) and Σ M? ^ b . - ^ a
d2

Now the linear system in α: and /S:

α + i8 = l Mia + ^β^b,
a2 α3

can be solved for a r b i t r a r y b19 since i t s d e t e r m i n a n t
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3 a2

by assumption.
This completes the proof.
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