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Let έ%? denote the Hubert space of square summable
analytic function on the unit disk, and consider those formal
differential operators

L = Σ pjy
ί = 0

which give rise to symmetric operators in ££*. This paper is
devoted to a study of when these operators are actually
self-adjoint or admit of self-adjoint extensions in £%?. It is
shown that in the first order case the operator is always self -
adjoint. For n > 1 sufficient conditions on the pt are obtained
for the existence of self-adjoint extensions. In particular a
condition on the coefficients is obtained which insures that the
operator has defect indices equal to the order of L.

Let Szf denote the space of functions analytic on the unit disk

and Sίf the subspace of square summable functions in Ssf with inner

product

, ΰ) = \ \f(z)g(z)dxdy .

A complete orthonormal set for §ίf is provided by the normalized

powers of z,

en{z) = [(n + l)/π]^zn , n = 0, 1, . .

From this it follows that §ίf is identical with the space of power

series Σ^U^z* which satisfy

(1.1) Σ|α.l7(» + 1)< - .

Consider the formal differential operator

L = pnD
n + ...

where D — djdz and the Pi are in Sίf. We now associate two operators

as follows. Let £&* denote the span of the en and 3f the set of all

/ in £ίf for which Lf is in ^ and define TQ and T as

Tf = Lf

It is shown in [2] that To and T are both densely defined operators
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in 3ίf, T0S T and T is closed. Moreover, To is symmetric if and
only if

(1.2) (Len, em) = (eH, Lem) , n, m = 0, 1, - .

Such a formal operator is said to be formally symmetric. Regarding
symmetric Γo we have the following result.

THEOREM 1.1. If TQ is symmetric, Γo* = T and Γ* s T. The
closure of To, S — Γo** = T*, is self-adjoint if and only if S = T.

Proof. See [2].

For / and g in ^ consider the bilinear form

(1.3) </, flr> - (L/, flr) - (/, Lg) ,

and let £? be the set of those / in £& for which </, #> = 0 for all g
in 3t. Since S = Γ* and ̂ ( Γ * ) = &r,S has domain ϋ k

Let «^+ and ̂ ~ denote the set of all solutions of the equation
Ln = in and Lu = — iu respectively, which are in Sίfi It is known
from the general theory of Hubert space [1, p. 1227-1230] that & =
έt + ̂ + + 3ί~, and every / e £& has a unique such representa-
tion. Let the dimensions of £^ + and 3ί~ be m+ and m~ respectively.
Clearly, m+ and m~ cannot exceed the order of L. These integers
are referred to as the deficiency indices of S, and S has self-adjoint
extensions if and only if m+ — m~~. Moreover, S is self-adjoint if and
only if m+ — m~ — 0.

2* In [2] it is shown that the general formally symmetric first
order operator is given by

(2.1) L = (cz2 + az + c)D + (2cz + b)

where a and b are real. In this case it is possible to compute the
solutions of Lu — ± iu explicitly and show that the solutions so
obtained are not in Jg=T Proceeding in this manner we obtain the
following result.

THEOREM 2.1. If L is a first order formally symmetric operator,
the associated operator T is self-adjoint.

Proof. We shall show that m+ and m~ are both zero. When
c — 0 L is just the first order Euler operator, and hence T is self-
adjoint by the corollary to Theorem 1.3 of [2]. When CΦO we have

(2.2) (z2 + (a/c)z + c\c)u' + (2s + b/c - i/c)u = 0
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(2.3) (z2 + (a/c)z + c/c)u' + (2z + b/c + i/e) = 0 .

The coefficient of u' has zeros at

a = - a/2c + (α2 - 4\c\ψ'/2c .

β= -a/2e- (a2 - 4\c\ψ*/2e .

There are three cases to consider:

1.
2.

3.

α 2 <

α 2 -

α 2 >

4|e
4|c

4 c

In case 1 we have a — — a/2c + ίR/2c, β — — α/2c — ίR/2c where
R = (4|c | 2 - α2)1'2, moreover | α | = |/5| = 1. Every solution of (2.2) is
a multiple of the fundamental solution φ(z) = (z — a)~~r(z — β)~~s where
r = (R- ΐ)/R -i{b- ά)/R and s = (R + 1)/Λ + i(δ - α)/Λ. Hence
every (nontrivial) solution of (2.2) is analytic in the open unit disc D
with at least one singularity on the boundary at z = β. We now
show that φ is not in έ%f, i.e., the integral I \\φ(z)\2dxdy diverges.

Introduce polar coordinates at β so z — β = peiθ. Let δ be less than
\β — a\, then there exist suitable θ1 and #2 such that for 0 < ε < 3,
t h e regions Wε = {z\ε <: p <^ δ, θ, <, θ <^ θ2} lie within D and a t Wt.

Now

(2.4) ( f I φ(z) \2dx dy ^ lim ( (| (z - a)~r ]21 (z - β)~s \2dx dy .

Since a g T ê it follows from continuity that | (2; — α)~ r |2 ^ m > 0 for
z in Wε, all 0 < ε < δ. Using this and the fact that | (z - β)~s \ =
p~uevθ

9 where s = u + iv, the inequality of (2.4) becomes

x dy ^ lim m Γ* (p~ 2 u + 1e 2 v ΰdρ dθ

^ l im mA:(^2 - 0X) ί *ρ~2u+1dρ ,
e-»0 Jε

where A: = infimum of e2vθ on θt <^ θ <. θ2 which is greater than zero.
But - 2u + 1 = - 2(R + ί)/R + 1 = - 1 - 2/R < - 1, hence the
integral on the left diverges and φ is not square summable.

The fundamental solution for (2.3) is given by φ(z) = (z — a)~r{z —
β)~% where r = (R + 1)/R - ί(b - a)/R and s = (R - l)/iJ + i(b - a)/R.
Hence φ(z) is analytic in the open unit disc D with a singularity on
the boundary at a. Let z — a — peiθ, then there exist suitable θt and
θ2 such that for 0 < ε < δ < \a - β\, the regions TFε = {z\ε ^ p <Lδ9

θt ^ θ ^ θ2) lie within D and /S g Wε. As before, we obtain
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( [ I φ(z) \2dx dy ^ lim mk{Θ2 - θx) [* p~2*+1dp
J D J ε->0 Jε

where | (z - β)~s |2 ^ m > 0 for all z in Wε and 0 < ε < δ, k is the
infimum of e2vθ on ΘX<LΘ ̂ >θ2 and r = u + m But — 2u + 1 = —
(ϋ? + 2)/i2 < — 1, hence the integral on the left diverges and φ is not
square summable.

In case 2 the coefficient of v! has a double zero at a = — α/2c
where | α | 2 = α2/4|e|2 = 1. The functions φ+(z) = (z - α)-V(*-"α)~1, r =
(δ - a - i)/c and φ_(z) = (z - a)~2er{z-a)~ι, r = (δ - α + i)/c are funda-
mental solutions for (2.2) and (2.3) respectively. Let us introduce
polar coordinates at z = a so that 2 — a: = ^eί/? and let us agree to
set θ — 0 so that for \z\ < 1, the argument of z — a is restricted to
the intervals 0 ^ θ < π/2 and 3τr/2 < θ < 2π. Let r = % + iv9 then

We note that u and v are not both zero, for then δ — a ± i = 0
where a and δ are real. Now consider the function F{θ) — u cos θ +
v sin θ. If u > 0, F(0) — u > 0 and by continuity there exist θx and
02 such that F{θ) ^u/2> 0 for θx^θ ^Θ2< π/2, similarly if <v > 0,
F(π/2) = 1; and there exist 0X and #2 such that F(0) ^ v/2 > 0 for
θγ<,θ <*θ2^ π/2. If v < 0, F(3π/2) = - v > 0 and there exist θί and
θ2 such that F(^) ^ - v/2 > 0 for 3π/2 < ΘX<*Θ <*θ2. Hence for all
r = % + iv, except for the case u < 0, v = 0, there exists a ikf > 0
and suitable βx and 02 for which F{θ) ^ M, ΘX<L θ -^ θ2. This case
requires only a minor modification which will be provided shortly.
It is easy to see that for given θx and θ2 we can find δ > 0 for which
the regions Wε = {z \ ε <̂  p < δ, θx ^ θ ^ θ2) lie entirely within the disc
for 0 < ε < δ.

Now consider | |^ ± | | 2 :

^ l i m ί \\Φ±(z)\2dxdy
ε—0 JWεJ

= lim ["2[!ρ-VFίOy"dp dθ
ε—0 J^iJe

^ lim (θt - θ,)
0ε-*0

Since \ e2i¥/ί?^ 3d̂ o diverges it follows that the φ± are not square sum-
Jo

mable, provided r is not a negative number. When r = u + iv^=u<0
we merely agree to set θ = 0 so that for | z | < 1 the argument of
z — a is restricted to the interval π/2 < θ < 3π/2. Then .F(π) = —
w > 0 and the argument is the same as before.



SELF-ADJOINT EXTENSIONS OF SYMMETRIC DIFFERENTIAL OPERATORS 573

In case 3, α 2 > 4 | c | 2 , the coefficient of v! has distinct zeros at
a = ( - a + R)/2c and β = ( - a - R)/2c where R = (α2 - 4|c|2)1 / 2 > 0.
For α > 0,

> 2 W > '

and therefore \a\ < 1. For α < 0,

2 |c |

and therefore \β\ < 1. Without loss of generality we assume \a\ < 1,
and 1/31 > 1. For | g | < | α | < 1, the functions φ+ and Φ_ given by

™+W — ^ — α ; v* — H)

Λ. (ιy\ — (/y /Ql **I C /Vl ^

where r — (R + b — α)/.β — i/iί and s = (i? + b — α)/i2 + i/i2, are funda-
mental solutions for Lu = iu and Lu = — w respectively. Now suppose
ψ* is any nontrivial element of Sίf which satisfies Lu — ± iu. In
particular ψ is analytic for \z\ < \a\ < I. From uniqueness results
this implies that ψ(z) = cφ±(z) for \z\ < | α | , where c Φ 0. By the
identity theorem for analytic functions this implies ψ(z) — cφ±(z) for
z\ < 1, hence 0±(z) is analytic in |« | < 1. But φ±(z) has a singularity

at \a\ < 1, therefore, the equations L^ — ± m have no nontrivial
solutions in

3* In this section we obtain conditions on the coefficients of L
which insure that for all λ every solution of Lφ — Xφ is in Sίf. If
L is a formally symmetric operator satisfying these conditions the
defect indices of the operator To are equal to the order of L and To

has a self-adjoint extension in Sίf.

In [2] it was shown that if L = Σϊ=o P&^fe is formally symmetric
then the p€ are polynomials of degree at most n + i. Regarding such
L with polynomial coefficients we have

THEOREM 3.1. Let L = Σ5U Pfc D* wAβre w ^ 2, pn(0) Φ 0,

(3.1) B = n(n + l)/2,

Γ1 Σ I α,(^)π[(^ + l)/2 - i] + α ^ O - 1) I .
i
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If A < 1 or A = 1 and B < B then every solution of Lφ = 0 is m

. Since pn(0) = aQ(n) Φ 0, every solution of Lu = 0 at the
origin is analytic in some neighborhood of the origin. Let φ(z) =
Σ?=o bjZ* be any such solution, we will show that there exists a positive
constant if and positive integer p such that \bj\ ̂  Kj~ίfv for j sufficiently
large. Consequently the series Σ7=o I &; 170" + 1) converges and φ belongs

to se.
We begin by obtaining a recurrsion formula for the bό. Substi-

tuting φ(z) — Σ7=o bjZ* into the equation Lφ(z) = 0 we obtain

where

πk(X) = λ(λ - 1) (λ — fc + 1) & ̂  λ

= 0 k>X .

Hence Lφ = 0 if and only if the following relationship holds for all j .

n n+k

(3.2) Σ Σ ai{k)πk(j — i + k)b^i+k = 0 .

Hence,

k—0 i=0

Noting that the sums involve only the δ ^ thru &i+%_i (where j > n)
and π̂ O* + n) never vanishes we may solve for bj+n to obtain

(3.3) bj+n = - (S, -f S2)/a0(n)πn(j + Λ) ,

where

and

for i > ^.
We now investigate the nature of St and S2 as polynomials in j .

It can be shown that πjj + ^ — 1) is a polynomial of degree n in j ,
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(3.4) π.(j + n-i)=j"

for i = 1, , 2n. Using (3.4) in (3.3) we obtain

(3.5)

lower powers of j .

Now consider S2. Since TΓ̂ J" — i + &) is a polynomial of degree k in
j, an examination of (3.3) shows that S2 is a polynomial of degree
n — 1 in i, and that the only terms which contribute to the coefficient
of jn~ι are those corresponding to k = n — 1. Hence

(3.6)
+ lower powers of j.

Combining (3.5) and (3.6) we obtain

(3.7) + j - g ^ α ^ ^ Y 1 ) - in) + α̂ (» -

+ , (j>n) .

Since τrΛ(j> + n) — jn + (n(n + l))^' 7 1 " 1 + , is always positive (3.3)
yields

/q o\ I ft I Qj. + 02
{Q. o) j O^ ̂  w j = ! π—— .

i ao(n)I bn + BJn 1 + ]
We now estimate \Sι + S2\- Let M(j) = Max (| &,-..»|, , | δi+»-i|), then
it follows from (3.1) and (3.7) that \S1 + S2\ ^ \ao(n)\[M(j)Ajn +
MWBj"-1 + . . - ] . Hence

(3.9)

for j > n, where A, B, and B are given by (3.1).
Consider the estimate (3.9) for \bj+n\,

(3.10) \bί+n\^Q(J)M(j) j > n ,

w h e r e Q(j) - (Ajn + Bj*-1 + )/(jΛ + Bj"-1 + • • • ) • W e n 0 * e t h a t
for fixed ζ, Q(i) SΞ 1 + ζj-1 for y sufficiently large if and only if Aj* +
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Bj*~ι+ ^ j n + (B + ζψ'1 + .. . Hence if A < 1 or A = 1 and
ΰ < β + ζ we have

(3.11)

for j sufficiently large. Now consider the expression

(1 + ζ(i + I)"1) (j-n + I )- 1 " ,

where ζ < 0 and p a positive integer. It is not difficult to see that
this is dominated by (j + n + l)~1/p for j" sufficiently large if and
only if

jp+i + (p + pζ + n + ±)jp + . . . ^ jp+i + (p - w + i)jp + . . . ,

for j sufficiently large. Hence, we have

(3.12) (1 + ζ(i + lDO* - n + I)-1/' ^ (i + w + I)- 1 ' '

for j sufficiently large if p ^ —
We now show that there exists a positive constant K and positive

integer p for which | b3- \ ̂  Kj~llP, j sufficiently large. By hypothesis
either A < 1 or A = 1 and B < B. If A < 1 let ζ = - 1 and p = 2n,
if A = 1, select ζ such that B - B < ζ < 0 and p > - 2nζ~\ For j
sufficiently large, say j > jί9 (3.11) and (3.12) hold. Set

so that 16,1 ^ Kj~1/P for j ^ j\ + n. Using (3.10) and (3.11) it follows
that

I bh+n+11 ^ (1 + CGΊ + l D M O Ί + 1)

where

= Max

= iΓOΊ - " + l ) " 1 / p

Hence | 6 i l + n + 1 | ^ (1 + Z(j\ + l)"ι)K(ji -n + l)~1/p, and using (3.12) this
yields

(3.13) I bh+n+11 =S K(j\ + n + ΐ)~^ .

We now proceed inductively to establish

(3.14) I bh+n+k I ̂  K(j\ + n + k)-1" & = 2, 3, • .

Let JEi = m a x Λ / ι + l ι + ι | b5 \j^, now JSΓt - max {K, \ bh+n+1 \ (j\
K, making use of (3.13). Using (3.11) yields

|&,1+.+I | ^ (1 + COΊ + Vr)M{jx + 2)
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where

M(j\ + 2) = Max (K(jt -n + 2)-1", .-

= K(jx -n + 2)~ ι" .

Using (3.12) it follows that

\bh+Λ+i\ £ K(j\ + n + 2)-1* .

Continuing on in this manner we establish (3.14) and the theorem is
proved.

We note that the conditions (3.1) of Theorem 3.1 involve only the
coefficients of the polynomials pn and pn_lf hence if L satisfies the
conditions of (3.1) so do the operators L ± i. Hence we have estab-
lished the following.

THEOREM 3.2. Let L be a formally symmetric operator which
satisfies (3.1), then the associated operator TQ has defect indices n+ =
n_ = n.

COROLLARY 3.3. The operator L = (c.z4 + cjdϊ/dz2 + (6c^3 + c3z
2 +

a2z + c3)d/dz + (βc^2 + 2c3z + α3), where a3 and a2 are real and \c±\ >
I c31 + |α2|/2, has self-adjoint extensions.

Proof. Applying the algorithm given in Theorem 2.3 of [2] the
general second order formally symmetric operator has coefficients

p2(z) = Cyrf + c2z* + axz
2 + c2z + cλ

p,(z) = 6c,z3 + (c3 + Sc2)zz + a2z + c3

po(z) = 6cxz
2 + 2c3z + α3 ,

where α1? α2, and α3 are real.
Now A = (jCil + 2|c2 | + l^iD/kil ^ 1 and A — 1 if and only if c2 =
<h = 0. Now B = 3 and 5 = flcj + |α 2 | + 21c81)/|^| < 3 if and only
if | c j > |c 3 | + |α2 |/2. Hence the result follows from the previous
theorem.
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