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LOCAL LIMITS AND TRIPLEABILITY

Tim Brook

If A is an object in a category -, the properties of /A
(the category of objects over A) may be considered as local
properties of %/, Using ‘local’ in this sense, the notion of
local universality is defined and some of its basic properties
developed. These ideas are then applied in a brief discus-
sion of local adjunction and local limits. Finally two local
tripleability theorems are given.

The Lawvere comma category of the diagram
1,:F —— & — & F

is denoted by <Z/F, in particular .<# /B denotes the category of objects
over B, when B is an object of 7.

Given a functor F: . — <7 we define [3] F:.»%— <7 /F and,
for each object A of & F4: or /A — <7 /F(A) by the following pull-
back diagrams in .7 7 i—

LEMMA 1. For any category & there are isomorphisms making
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Proof. &% &7 7 1is cartesian-closed.

Let F: & — < be a functor and f: B— F(A) a map in 7
The pair {f,, f.) is a locally-universal pair (dual colocally-couniversal)
from f to F when f;:f— F*(f) € &£ /F(A) is universal from f to F“
in the sense of MacLane [6]. Similarly a locally-couniversal pair
(dual colocally-universal) from F to f is a pair {f,, f.> for which
Sor FA(f)) — f is couniversal from F“* to f.

LEMMA 2. The pair {f,, f.y is locally-couniversal from F to f if
and only if (f,, 1.): F(f) — (B, f: B— F(A), A)e .<Z|F is couniversal
from F to f.

THEOREM 1. Let F: .7 — .27 be a functor and f: B— F(A) a map
in Z. There is a locally-couniversal pair from F to f if and only
if there is a couniversal map from F to (B, f: B— F(A), A)ye & |F.

Proof. 1f (f,, f): F(f,) — (B, f: B— F(A), A) is couniversal from
F to £, then so is (f,, 1): F(f.f)) — (B, f: B— F(A), A). The result
now follows by Lemma 2.

The corresponding result for locally-universal pairs is false in
general, although Kaput [3] showed that a functor F is locally-
adjunctable if and only if F' has an adjoint.

The functor F: .o — 27 is locally-adjunctable if a locally-universal
pair exists for every f: B— F(A)e <z and locally-coadjunctable if
a locally-couniversal pair exists for every g: F(4) — Be 7.

Leroux [5] stated the following proposition, which is an immediate
consequence of Theorem 1.

_ProposITION 1. A functer F'is locally-coadjunctable if and only
if F has a coadjoint.

From which, by Lemma 1, we obtain

PROPOSITION 2. If a functor F: o7 — 7, is locally-coadjunctable
then so 1s F'¥: 7 — &7 for any category &.

THEOREM 2. Let F:.o7 — .c& be a functor and f:B— F(A),
c: F(A"Y— B, ¢: F(A”") — F(A) maps in <F with ¢ couniversal from
F to F(A). By couniversality there are (umique) maps s, t for which
cF(s) = 1, and ¢F(t) = fe.

(A) Suppose ¢ is couniversal from F to B. The diagram
stA— A" — A"t has a pullback in 7 if and only if there is a
locally-counivearsal pair from F to f.
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(B) Suppose ¢ is an identity map. The map ¢ is couniversal
from F to B if and only if {c, t) is locally-couniversal from F to f.

Proof. (A) If

A
f1J (%) t
A S

— An

is a pullback in &7 then {(cF'(s'), fi) is locally-couniversal from F' to f.
Conversely, if {f, fiy is locally-couniversal from F' to f then (*) is
a pullback where s’ is the unique map for which c¢F'(s') = f..

(B) Suppose <¢, t) is locally-couniversal from F to f. For any
g: F(A) — B, by the couniversality of 1,.,, there is a unique 4 for
which F(4) = fg. Thus there is a unique p for which (i) tp = h and
(ii) ¢cF(p) = g. Again by the couniversality of 1, (ii) implies (i)
and so p is unique in satisfying (ii).

The converse follows directly from (A).

CoroLLARY 1. (Leroux) If a functor F:.& — <& has a coad-
joint and &7 has pullbacks then F is locally-coadjunctable.

Let 4: ¥ — &% Dbe the canonical embedding. If D: 2 — & is
a functor and p: D— 4(X)e &%, then a locally-universal pair from
o to 4 is called a local colimit for D at o and a locally-couniversal
pair from 4 to p is called a local limit for D at p.

CoroLLARY 2. (Folklore) When 27 is a connected category, D
has a limit if and only if it has a local limit at p.

The definitions of local limit and colimit are the obvious ones to
make (given the definition of local universality) but they are essen-
tially renameings of limits and colimits in &°/X. Thus the standard
theorems on limits, colimits and adjointness have local counterparts;
moreover, in most cases the local result is a trivial corollary of the
global. Propositions 3, 4, 5, and 6 are immediate consequences of this
observation.

ProrosITION 3. If a functor is locally-adjunctable then it pre-
serves Z7-limits for any connected category 25 In particular it
preserves pullbacks and equalizers.
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ProrosiTioN 4. If a functor is locally-coadjunctable it commutes
with colimits.

A functor U: & — &7 is locally-tripleable if U®: <% |B— o7 | U(B)
is tripleable for every object B of <%

PropPoSITION 5. If a functor is locally-tripleable then it preserves
and reflects Z-limits for any connected category 27

ProrosiTION 6. Suppose that U: & — 7 1s locally-tripleable and
that &7 and <& have finite products. If U preserves Z7-colimits
then it reflects Z7-colimits. (U reflects the colimits that it preserves.)

For each map f: X — Ye & the functor f': & /X — &°/Y defined
by /(X' — X) = (X’— X— Y), and the forgetful functor /X — &
are trivially locally-tripleable for any category «. It is also clear
that every full locally-reflective subcategory has a locally-tripleable
inclusion functor. The following theorem serves to show that every
tripleable functor is locally-tripleable and also that the category of
fields is locally-tripleable over the category of sets.

THEOREM 3. Let U: Z — .o be a locally-adjunctable functor.
U s locally-tripleable if and only if
(1) U reflects coequalizers of cobounded U-contractible pairs
(ii) <& has coequalizers of cobounded U-contractible pairs
(iii) U preserves coequalizers of U-contractible pairs.
(Here a cobound for a paird, d: X— Ye <# isamap b: Y —>Be .z
for which bd, = bd,.)

The proof relies heavily on Beck’s tripleability theorem [1].

Proof. If dy, d:(X— B)—(Y— B)eZ/B is a UP-contractible
pair, then d, d;: X— Ye<Z is clearly a cobounded U-contractible
pair. Thus (i), (ii), and (iii) are together sufficient for local tripleability.

Conversely, suppose U is locally-tripleable and d,, d,: X — Ye <Z
is a U-contractible pair.

(1) Suppose that U(d) is a coequalizer of U(d,) and U(d)), and
thus a contractible coequalizer. For any ccbound b: Y — B,

U(dq)
) Ucd)

v —Y4g) o ey u@)

‘\SQ_—// ‘\S/
U(bN iU(b) Ucb)s
ute)
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is a contractible coequalizer diagram in &7 /U(B). The category <#/B
has and U? preserves coequalizers of UP®-contractible pairs so,
without loss of generality, U(b)s may be taken to be U(z) for some
z: Z— Be .<Z for which

is a coequalizer diagram in <#/B.

Thus the existence of a cobound implies that dd, = dd,, and the
remaining properties of a coequalizer follow as b: (Y — B) — (B— B) €
& |B.

(ii) If the U-contractible pair d,, d,: X— Y has a cobound b: Y—B

then d,, d;: (X o, B)— (Yi B) is a U®-contractible pair and thus has

a coequalizer, ¢: (Y — B) — (C— B)e .<#/B. The map U®(c) is a coe-
qualizer of U?(d,) and U?(d)) and thus a contractible coequalizer.
Therefore U(c) is a contractible coequalizer of U(d,) and U(d,). By
(i) ¢ is a coequalizer of d, and d,.

(iii) The preceding construction also serves to prove (iii).

By the same reasoning the following local version of Duskin’s
tripleability theorem [2] may be obtained.

THEOREM 4. Let U: <% — .7 be a locally-adjunctable functor
and suppose that .7 has kernel pairs. The functor U s locally-
tripleable if and only if

(1) U reflects coequalizers of cobounded U-contractible equivalence
PaLrs

(ii) U preserves coequalizers of U-contractible equivalence pairs

(iil) <& has coequalizers of cobounded U-contractible equivalence
paTrs

(iv) <Z has kernel pairs.

The author is indebted to Dr. S. A. Hugq for suggesting this
problem.
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