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Let R and C be the real and complex fields, respectively,
and for ζeC let ^ ( ζ ) be the real part of ζ. If / : M»+1 -> N*
is real analytic and open with p Ξ> 1, then there is a closed
subspace XdMp+1 such that dim/(X) ^ p — 2 and, for every
x 6 Mp+1 — Xy there is a natural number d(x) with / at x locally
topologically equivalent to the map

φM: C x R*-1 — > R x R*~ι

defined by φdM{z9 tl9 , tp^) = (^(z*<*>), tlf , ί ^ ) .

In [7] Nathan proved: It f: M2—> N1 is real analytic and open,
then for every xeM2 there is a natural number d(x) with / at x
locally topologically equivalent to the map φd(x): C —> R defined by
Φπ*)(z) — &(zdix))> This is the case p = 1 of the above theorem, but
our proof is not a generalization of his.

Examples (see (3.3)) show that "topologically equivalent" cannot
be replaced by "analytically equivalent" or even "C1 equivalent", /
real analytic cannot be replaced by / C°° (but see (3.1)), an excep-
tional set X with dim/(X) ^ p — 2 is needed, and dim X may be
p - 1 .

CONVENTIONS 1.2. We must assume that the reader has [2] at
hand, and we follow its conventions. In particular we need [2; (2.2),
(2.4), (2.5), (2.6), (2.8), (2.9), (3.1), and (3.9)]. For f:Mn->N*> Bf is
the set of x in Mn at which / is not locally topologically equivalent
to the projection map p: Rn —> Rp. The symbol ^ is read "is diffeo-
morphic to".

DEFINITIONS 1.3. C-analytic sets are defined in [2]. A C-analytic
set is called C-irreducible [9, p. 155] if it is not the sum of two C-
analytic subsets distinct from itself. Whitney and Bruhat [9, p. 155,
Proposition 11] prove that any C-analytic set V is uniquely the
(countable) locally finite union of C-irreducible C-analytic subsets Vm9

no one of which contains another. The Vm are called the C-irreducible
components of V. Conversely, any locally finite union of C-analytic
sets is a C-analytic set [9, p. 154].

DEFINITIONS 1.4. Let V be a complex analytic set of dimension
v. There is a complex analytic subset SczV such that dim S < v and
V — S is a complex analytic 'y-xnanifold [8, p. 500]. (The points of
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V — S are called simple or regular.) Let M be a complex analytic
manifold, and let T(M, p) for p e M be the tangent plane of M at p.
Suppose that for each p e M, i -plane T, and sequence {gj cz V — S
with qi~>p and T(V, &) -> T, we have T{M, p) c T; then F is said
to be a-regular over M. If F and ikί also satisfy another property
(^-regular), then F is said to be regular over M [8, p. 540].

LEMMA 1.5. (Whitney [7, p. 540, Lemma 19.3].) Suppose that
V and W are complex analytic sets, and dim F > dim W. Then there
is a complex analytic subset S of W such that dim S < dim W, each
point of W — S is simple, and V is regular over the complex analytic
manifold W — S.

2* Analytic sets and maps.

LEMMA 2.1. Let f:Mn-+Np he Cω, and let VaMn be a non-
empty C-analytic subset of Mn with dimension v. Then

(a) (Whitney and Bruhat [9, p. 156, Proposition 13]), there is a
C-analytic subset S a V such that dim S ^ v — 1 and V — S is a v-
dimensional Cω submanifold of Mn;

(b) there is a C-analytic subset E a V such that V — E is a v-
dimensional Cω submanifold of Mn, f\(V — E) has constant rank rf

and dim f(E) ^ v - 1;
(c) dim/(F) ^ max {v — 1, r) ^ v; and
(d) if V is C-irreducible (1.3), then dim/(F) fj r.

Proof. We use induction on v; if v = 0, then F is discrete and
the results are trivial.

Let Vm be the C-irreducible components of F (1.3). According
to [2, p. 22, (3.1)] there is a C-analytic subset Em of Vm such that
dim Em < dim F w , Vm — Em is a Cω submanifold of Fm with dimension
dim Fm, and / | ( F w — JŜ ) has constant rank rm. Let r be the maxi-
mum rm for those m with dim Vm — v.

If (1) dim Vm < v, or (2) dim Vm = v and rm < r, let .Fm - F w ;
(3) otherwise, let Fm = Em. Since the Fm are locally finite, the Fm

are also. Let S c F b e the C-analytic subset given by (a). Then by
inductive hypothesis (c), dim/(S) < v and dim f(Fm) < v in cases (1)
and (3). In case (2) dim f(Em) < v also, and, from the Rank Theorem
[1, p. 155] applied to f\ (Vm - Em), dim (f(Vm - Em)) Srm<r^v.
Since each of Em and (Vm — J5W) is the countable union of compact
sets, dim/(Fm) < v. Let E = S U ( U ^ J Then dimf(E) < v; (b)
results from the local finiteness of. the Fm and (1.3); and (again from
the Rank Theorem) (c) is a corollary.
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Now suppose that V is C-irreducible. Let W be the set E of
(b), let Wm be its C-irreducible components, and let Em be as given
by (b) for Wn. If each f\(Wm-Em) has rank at most r, then
dimf(Wm)^r by inductive hypothesis, and (d) follows. Thus we
may suppose that for some Wm and Em, call them W and E, f\(W — E)
has rank greater than r.

Let M*, N*, /*, F*, W*, and (W - E)* be complexiίications
(see e.g. [2, (2.4), (2.5), (2.6)]), where M* is small enough that F* is
irreducible in M* [9, p. 155, Proposition 11 and p. 151, Corollary 2].
Let E'aV* be as given by [2, (3.1)] for F* and /*, so that
/* | (F* — JE") has constant rank fc. By definition of r, Fhas a simple
point x at which f\ V has rank r; thus /* | F* has rank r at α? also,
so that k^r. Since dim!?' < dim F* = v [9, p. 155, Proposition 12],
dim (£" Π Mw) < v; thus A; = r.

Let S* be the analytic subset of (W — E)* given by (1.5) such
that V* is regular over the manifold X* = (W - E)* - &* and let
g e P . Since F* is irreducible, the simple points of F* are dense
in F* [5, p. 68, Corollary 2]. Thus F* - CT[F* - #'], so there exist
Qi e V* - Ef with gf -• g. Let ^ and Γ be the tangent planes of
F* — Ef at & and of X* at g, respectively. Since the Grassman
manifold G of ^-planes in Cn is compact, there are T' e G and a
subsequence TiU)—+Tr, and since F* is α-regular over I * , Γ c f .
Now / | (F* — £") has rank r, while /* | X* has rank greater than r,
and a contradiction results.

Substantially the same proof yields the complex analog, where
C-analytic is replaced by analytic. There is a unique minimal set E
satisfying (b), viz. the intersection of all sets E satisfying (b).

LEMMA 2.2. Let f: Kk x Ev~ι —> R x R*-1 (p ^ 1) be a Cω layer
map (i.e., f(Kk x {t}) c R x {£}), ίeί ft: Kk-+R be defined by (ft(x), t) =
/(α?, ί), α^ώ let Γ a Rp_±(f) be a C-analytic subset with dim.Γ ^ p — 1.
T%e^ ί/ierβ is a C-analytic subset A c Γ such that dim/(J) ^ p — 2

dim ((Γ - J) Π ( ^ x {ί})) ^ 0

/or eαcA ί e Rp~\

Proof. Let E (Z Γ and r be as given by (2.1(b)). If r < p — 1,
then let J = Γ; if r = p - 1, let A = E. In either case, dim/(J) ^
p - 2 (2.1(c)). If Γ - Δ Φ 0 , it is a Cω(p - l)-manifold, and/ | (Γ - A)
has rank p - 1. Since Γ c i ? M ( / ) , -β,_χ(/) Π ( ^ x {ί}) = R0(ft), and
dim (ft(Ro(ft))) ^ 0 (by Sard's Theorem [1, p. 156]), Γ - A is trans-
verse to each Kk x {£} at each point of intersection. In other words,
the inclusion map i: Γ — A —> Kk x i^" 1 is transverse regular on Kk x
{ί}, so by Thorn's Transversality Theorem [1, p. 165] i~\Kk x {ί}) =
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(Γ — A) Π (Kk{t}) is a 0-dimensional manifold.

LEMMA 2.3. // / : R2 x Rp~ι —> R x i ^ " 1 ΐs cm ope^ Cω ίαi/er map,
then there is a closed subset XczR2 x I?*'"1 swc/& £fcaί d i m / ( X ) ^ p —2
and dim ((B, - X) n /""%, t)) ^ 0 for each (y, t)eR x JR*"1.

Proo/. By the Rank Theorem [1, p. 155] BfczRp^(f). (*) It
suffices to prove the theorem locally, i.e., to show that for each
(x, t) e i2p_i(/), there are neighborhoods P ^ R2 oί x and Q ρ& R^1 of
t such that f\P x Q satisfies the conclusion.

Now Rp^(f) is a C-analytic set [2, (2.9)], and since dim
p — 1 by Sard's Theorem [1, p. 156] and / is open, dim (i2p_i(/)) ^ p.
It is the union of its C-irreducible components Vm with dimension vm;
let En and rm be as given by (2.1(b)) (or [2, (3.1)]). Let E be the
union of the C-analytic subset SaR^f) given by (2.1(a)), the Vm

for ^m = rm — p — 1, and the i?m for vm = p and r w — p — 1, and let
F be the union of the Vm with rm ^ p - 2. Let G a E he the C-
analytic subset A given by (2.2) for Γ = E. Then dim (/(F U G)) ^
p - 2 (2.1(d)), so we may define X to contain F [J G. Thus (see (*))
we may consider only neighborhoods P x Q disjoint from F U G,
i.e., it suffices to prove the lemma in case F = G = 0 . By (2.2)
dim (E n (i?2 x {£})) ^ 0 for each £ 6 1 ^ " 1 , so (see (*)) it suffices to
prove the lemma at the points of Rp^(f) — E, i.e., to assume E — 0 .
Thus Rp-ίif) is a p-manifold (or is 0 ) and f\ Rp_x{f) has rank p — 1.

We now apply [2, (3.9)] to each component Γ of Rp^(f)> Since
/ is open, each k(Γ) is odd and Bf is contained in the at most (p — 1)-
dimensional analytic set A = \JΓ A(Γ). Let Δ c A be the C-analytic
subset given by (2.2). We may take A = X, and the conclusion results.

3* Proof of the theorem*

THEOREM 3.1. ([3, (1.1) and (4.1)].) Let f: Mn -> Np be a C3 open
map with p ^ 1, and let dim (Bf Π f^iy)) ^ 0 /or βαc/i y e Np. Then
there is a closed set XaMvΛl such that diπif(X) ^ p — 2 and, for
every x e Mp+1 — X, there is a natural number d(x) with f at x locally
topologically equivalent to the map

φd(x): C x R*-1 > R x i ^ " 1

defined by φd[x){z, tl9 , tp_x) = (^(zd{x]), tl9 , tp_x).

Proof of (1.1) 3.2. Let X = X(f) be the complement of the set
on which / has the desired structure; then XaBf is closed. We
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suppose that dim/(X) ;> p — 1, and will obtain a contradiction.

Since / is C\ dim (f{RPM))) ^ P - 2 [1, p. 156]. If, for every
x e Mp+1 - f~ι{f{Rv-£f))), there is an open neighborhood Ux c Mp+1 -
Γ\f(RvM))) of x with Ux compact and dim (f(Ua Γi X)) £ p - 2, it
follows from the fact that [Ux] has a countable subcover that
dim (f(X)) ^ p - 2. Thus, there is an x e Mp+1 - f~ι{f(RvM))) such
that, for every open neighborhood UaMp+ι — f~ι(f{Rp^2{f))) of x,

By [1, p. 156, Layering Lemma] there are open neighborhoods U
of x and V of f(x) and C r diffeomorphisms σ: R2 x i?23"1 ^ ί7 and
p: V p& R x iί2'"1 such that p°f°σ = g is a C r layer map and σ(x) =
(0, 0). Thus dim g(X(g)) ^ p - 1. By (2.3) there is a closed set 7 c
R2 x J?2'-1 such that dim g(Y) ^ p - 2 and dim ((B, - Γ) Π g
0 for each yeR x i?2'"1.

Let /& be the restriction g \ [(R2 x i?2'-1) - Y]; then X(A) = X(g) -
Γ, dim h(X(h)) = p - 1, and dim (BA Π /̂ "1(̂ /)) ^ 0 for each yeRx
Rp~\ contradicting (3.1).

EXAMPLES 3.3. Open maps f:M2-*R with dim (Bf Π f~\y)) = 1
are given in [4, p. 341] and [6, p. 329]; the latter example may be
assumed to be C°° except on one point inverse, and thus [1, p. 151]
may be assumed to be C°°. As a result, " / real analytic'' may not
be replaced by "/C~" in (1.1).

The maps / and g defined by f(z) = &{z) and g(z) = {^B(z))z are
locally topologically equivalent at 0, but are not locally C1 equivalent,
since g has rank 0 at the origin.

There are examples [2, (4.7)(b)] with X = Bf, dim Bf — p — 1,
and dim/(J5/) = p — 2.

REMARK 3.4. A real analytic open map f:Mp~+Np is light [2,
p. 28, (4.2)], and thus for p ^ 2 satisfies a structure theorem [1, p.
155] similar to (1.1).
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