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B. E. FULLBRIGHT

Let p and q be integers with p = ¢ =2. A family § of
compact convex subsets of a finite dimensional linear space is
said to have the (p, q)-property if & contains at least p sets and
from each p sets of § some ¢ have a common point. In this
paper a family ¥ is defined to have the (p, ¢, k)-property in a
n-dimensional normed linear space if §¥ has the (p, q)-property
and an additional property which is measured by %k, with 0 <
k < 1. In some sense &k measures the “squareness” of the mem-
bers of . The main result is that if £ > 0, there exists a
positive integer P,(p, q, k) such that each family ¥ with the
(p, q, k)-property in a n-dimensional normed linear space can be
partitioned into P,(p, q, k) subfamilies each with a nonempty
intersection.

Hadwiger and Debrunner have considered the following
question: Is there a positive integer N(p, q, n) such that every
finite family ¥ of sets in £ with the (p, ¢)-property can be par-
titioned into N(p, ¢, n) subfamilies each of which has a nonempty
intersection?

1. Preliminaries. Let & be a family of nonempty subsets of a
space X and 7 a positive integer. The family ¥ is said to be r-piercea-
ble if there exists a subset F' of X consisting of = or fewer points
such that ANF # @ for all Ac$. If § is r-pierceable for some 7,
then define || = min {r: § is r-pierceable}. If & is not r-pierceable
for any positive integer r, then define |F| = co.

The following lemma is a generalization of a well-known theorem
about the intersection of families of closed and compact subsets of X
with the finite intersectional property. The proof is routine and is
omitted.

LemMMA 1.1. Let F be a family of closed and compact subsets of
X and m a positive integer. If | & | < m for each nonempty finite
subfamily < of F, then |F| < m.

The symbol L™ will denote the n-dimensional normed real linear
space consisting of all n-tuples of real numbers whose norm is given
by i (e, - -+, a,) || = max | a;|, and the symbol B* will denote the closed
unit ball of L". To each ordered pair (x, A) where A is a compact
subset of L" and xze A, associate real numbers I(x, 4) and E(x, A)
defined by I(x, A) = sup{\: 2 + M\B*C A} and E(z, A) = inf (A = 0: ¢ +
AB* D A}
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Let & be a real number with 0 <% < 1. Then a family § of
nondegenerate compact convex subsets of L™ is said to have the
(p, @, k)-property in L", if ¥ has the (p, g)-property and for each A ¢ $
there exists a point xe A such that (I(z, 4)/E(x,A)) = k. Note that
since A is a nondegenerate set FE(x, A) # 0; consequently, the above
ratio is defined and satisfies the inequality 0 < (I(z, 4)/E(z, A4)) < 1.

For integers p, ¢, and n with p=¢ =2, n =1 and real number
k with 0 <k <1 define P,(p,q, k) =sup{|{BF|: & has the (p,q, k)-
property in L"}.

It is easy to see that if ¥ is a family of subsets of L™ with the
(p, q)-property then |F| < P.(p, g, 0). This fact together with Lemma
1.1 implies that the number N(p, ¢; ») as defined by Hadwiger and
Debrunner [2] is the same as P,(p, ¢, 0). By a slight alteration of
the proof of Hadwiger and Debrunner’s theorem [2] one can obtain
the following theorem.

THEOREM 1.2. If § is a finite family of subsets of L™ with the
(p + m, ¢ + n — 1)-property, there exists a subfamily 57 of F such
that || =< | 7| + 1 and etther 57 has the (p, q)-property or | 57| <
»—q+1.

COROLLARY 1.3. P, (p+m, 9+ n —1,k) < P,(p, q, k) + 1 for all
kelo, 1].

Proof. This is a consequence of Theorem 1.2 and Lemma 1.1.

COROLLARY 14. Ifp=g=zn+1zZ2andng=mn —1p +n +
1, then P.p, q, k) =p—q+ 1 for all ke]0, 1].

Proof. By means of an example it is not difficult to show that
P(p, q, k) = » — q+ 1. Helly’s theorem [4] implies that P,(p, p, k) =
lforp=n+ 1 and ke]0, 1]. The corollary now follows from Corol-
lary 1.3 and by induction on p — q.

2. The main result. Let §={4;:¢ =1, ---} where 4; is the
convex hull of the set {(1/¢, 0), (0, 1 — 1/2)}. Then % has the (2, 2, 0)-
property in L? and || = o. Consequently, P,(2, 2, 0) = «. Similar
examples can be constructed in L", n = 2, to show that P,(n, n, 0) =
oo, Consequently, P,(p, ¢, 0) = o forallp = ¢=2and ¢ £n. How-
ever, the following theorem implies that the situation is somewhat
different for & > 0.
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THEOREM 2.1. Let p, q, and n be positive integers with p = q =
2 and k a real number with 0 <k <1. Then P,(p, q, k) is finite.

Proof. Let N, be the minimum number of translates of kB»
required to cover (1 + k)B™ and N, the minimum number of trans-
lates of k*B™ with center of symmetry on bd[(l + k¥)B"] required to
cover bd[(1 + k)B"]. Lemma 1.1 implies that it suffices to show that
IF] < (p — q + 1)(N, + N,) whenever & is a finite family of sets with
the (p, q, k)-property in L".

Let § ={4;:12=1, ---, m} have the (p, q, k)-property in L". For
each A; e there exists a point x; € A; such that (I(x;, 4,)/E(x;, 4,) =
k. To simplify notation let I, = I(x;, 4:;) and E; = E(x;, A;). Without
loss of generality assume that E, = min{E;} =1 and 2, = 0. Let $,
consist of all sets in & which meet A, and &, = \F,- Now divide F,
into two subfamilies &, = {4A;eF.:||x:|| <1+ k} and & = {4;eB:
[l@: ] > 1+ k}. There exists N, points 2, ---, zy, such that (1 + k)B"
is covered by the family {z; + kB4 =1, ..+, N}. For A,e & it
follows that x;e€z; + kB" for some j. Since I, = kE; =k, it follows
that «; + kB~cC A;. Moreover, z;€z; + kB™ implies that z;ewx; +
kB™ C A;; consequently each set in &, contains some z;. Therefore,
| &€l = N.

Now let 4;e &,. Since A; N A, # @ and A, c B*, it follows that
A;NB"# @. Lety,e[bdB"lN A4; and w; = \x; + (1 — \)y; belong to
bd[(1 + k)B"] with 0 <X\ < 1. The set w; + MI;B") is contained in
the convex hull of the set {x; + I,B"} U {%;} which is contained in A,.
Now k& < ||y; — w;i || = M| ¥; — @ || £ \E;, which implies M; = (k/E)I; =
k*. Therefore, w; + k*’B~C A;. Let w, ---, uy, be N, points such
that u;ebd[(1 + k)B*] and bd[(1 + k)B"] is covered by the family
{u; + k*B™j =1, .--, N,}. Now w;€u; + k*B" for some j, which im-
plies that u; e w, + k*B"c A;. Hence, each set in &, contains one of
the N, points u,, - -, uy,; consequently | ;| < N,. Therefore, || <
N, + N..

To complete the proof note that since each set in 3, fails to in-
tersect A,, it follows that either ¥, has the (p — 1, g, k)-property or
B, fails to contain p — 1 sets. The theorem now follows by induction
on p — q.

For & > 0 the proof of Theorem 2.1 can be used to obtain upper
bounds for the values of P,(p, ¢, k). In the case of k¥ = 1, Hadwiger
and Debrunner’s work with families of mutually parallel parallelotopes
[3, p. 32] can be used to obtain upper bounds for P,(p, ¢, 1) and if
the supplementary condition 2 < ¢ < p < 2¢ — 2 is satisfied, then
P,(p,qg1)=p—q+ 1

As a function of ke[0,1] to the positive integers union oo,
P,(p, q, k) is a decreasing function and Theorem 2.1 implies that it is
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integral-valued for ke (0,1]. The following theorem implies that it
is continuous from the right at each ke |0, 1).

THEOREM 2.2. Let k,€[0,1) then P,(p,q, k)— P.(v,q, k) as k— k.

Proof. By Lemma 1.1 it is enough to show that ||
sup {P,(p, q, k): k > k,} for each finite family F with the (p, q, k.)-
property in L". For such an § and ¢ > 0, let . = {4 + eB": AcF}.
Then . has the (p, g, k.)-property in L", where k. > k, and k, — k, for
¢ —0; also, by simple compactness arguments [F| < liminf,_|F.| =
sup {P.(p, q, k): k > ki}.

For p=q¢=2 and n = 1, let D(p, q; n) denote the set of points
in [0, 1] where as a function of k¥ P,(p, q, k) is discontinuous from
the left. If p, ¢, and % satisfy the inequalities in Corollary 1.4, then
clearly D(p, ¢;n) = @. It is unknown whether or not there exist
values of p, ¢, and n such that D(p, ¢; ) is a nonempty finite set.
If D(p,q;n) # @ then D(p,g;m) can be written in the form
{£(p, ¢; n): e}, where J is either the set of positive integers or an
initial segment of the positive integers, with &, .(p, ¢; n) < &(v, q; n).
In the next section &,(p, q; #) will be determined for certain values
of p, ¢, and n.

3. Some examples. From Corollary 1.4 and the fact that
P,(p, q 0) = for n =qg=2 it follows that the case with the
smallest values for p, ¢, and », in which the question is unanswered
as to whether or not P,(p, ¢, 0) is finite or not is that of p =4, ¢=3,
and n = 2. However, it is known that P,4, 3, 1) = 2. An example
will now be constructed to show that P,(4, 8, k) = 3 and P,(2, 2, k) =
3 for all £k with 0 <k < 1.

ExampLE 3.1. For m = 3 define points in L? as follows:

A,=(-12m,0, B,=(1/2m,0, C,=(0, —1/m), D=(,0),
E=(-,0, F,=Q1, -1m), G=(-1,-1), H=(1,-1),
I=0 -1), J=(-1,2, K=(,2), L,=(-1 —1+1/2m).
Also, let M, and N, denote the points of intersection of the line
through C, and D with the line # = —1/2m and x = 1/2m, respec-
tively, P, the intersection of the line through I and N, with the
line y = —1 + 1/2m, R, the intersection of the line through I and

M, with the line through E and C,.
Using the above points, define sets in L* as follows:
S, =conv{J, K, D, C,, E}, Sz = conv {N,, D, H, I},
Si =conv{C,, F,, I, H}, Si =conv{E, R,, I, G},
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S: = conv {E, M, P,, L,}, and S = conv{A,, B,, N,, M,} .

Let &, = {Si:i=1,...,6} for m =38, ---. Figure 1 illustrates the
family §,. For each m with m =38, the family %, has both the
(2, 2)-property and the (4, 3)-property. Moreover, |JF,| =3 for all
m = 3. Note also that given %k <1, m can be chosen large enough
such that %, has both the (2, 2, k)-property and the (4, 3, k)-property
in L® Consequently, Py2, 2, k) = 8 and P,(4, 3, k) = 3 for all k£ with
0 <k < 1. Since as a function of n, P,(p, q, k) is an increasing func-
tion, it follows that P,(2, 2, k) =8 and P,(4,3,k) =3 forall0 =k <
1and » = 2. This with the fact that P,(2, 2, 1) =1 and P,(4,3,1) =
2 implies that &,(2, 2; n) = £&,(4, 8;n) =1 for all n=2. Griinbaum [1]
has”given"an example of a family & consisting of 21 circular disks in
L? with the (2, 2)-property such that |¥|=4. Thus, P,(2,2,V2/2) =
4 for all n = 2.

THEOREM 3.1. If 2 < q = n, then &(q, ¢;m) = 1.

Proof. Since P,(q, q, 1) = 1 it suffices to show that if £ < 1, then
P.(q, q, k) = 2. Moreover, since P,(q, q, k) = P.(n, n, k) for ¢ < n the
theorem will follow by showing that P,(n, n, k) = 2 for all k£ < 1.
Example 3.1 implies the desired result for » = 2, so assume that n = 3.

E -” D
Fm
m
L, P,
G
7 "
FIGURE 1

Without loss of generality, assume that L**' is the subspace of L"
which is perpendicular to the line determined by the origin and the
point (0, ---,0,1). Since P, (n —1,n — 1, 0) = o, there exists a
finite family § = {4;:¢ = 1, -+, m} with the (v — 1, » — 1, 0)-property
in L™ such that || = 2. Without loss of generality, assume that
A;,cB** for i =1,--., m. Let A{ denote the convex hull of the set
A;U[B"+ (0, -+, 0,1+ (1/9))] and let A = B" + (0, ---, 0, —1). For
j=1---let § ={4i:i=1, ---, m} U{A}. Then the family %, has
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the (n, n, 5/( + 1))-property in L™ and |F;| = 2. Thus, if 0 <k <1,
there exists a j such that §; has the (n, n, k)-property in L* and
|B;] = 2. Consequently, P,(n, n, k) = 2 for all & with 0 <k < 1.

4. Concluding remarks. The procedure used in this paper in
defining the piercing function P,(p, ¢, k) depends on the set B”. A
similar development using any closed unit ball of an n-dimensional
normed linear space could have been done. The theorems and corol-
laries which were proven in §§1 through 2 would still remain true.
However, the piercing function will not be identical to P,(p, q, k)
unless the unit ball is a parallelotope. The unit ball B* seems to be
the best of all possible choices because P,(2, 2, 1) = 1. This would not
have been the case if the unit ball was not a parallelotope.

This paper gives rise to several unanswered questions which
should be rather clear from the context. However, they could all
probably be answered by answering the primary question, that is, what
is the value of P,(p, q, k) for all p=z¢=2, n =2, and 0k £17
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