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It is proved in this paper that the Hanf number m°® of
omitting complete types by models of complete countable
theories is the same as that of omitting not necessarily com-
plete type by models of a countable theory.

Introduction. Morley [3] proved that if L is a countable first-
order language, T a theory in L, p is a type in L, and T has models
omitting p in every cardinality » < 2,, then T has models omitting
p in every infinite cardinality. He also proved that the bound 3,
cannot be improved, in other words the Hanf number is 3,. He
asked what is the Hanf number m° when we restrict ourselves to
complete T' and p. Clearly m° < 3,. Independently several people
noticed that m® = 3, and J. Knight noticed that m® > 2.,.

Malitz [2] proved that the Hanf number for complete L., .-theories
with one axiom +¢L,,, is 3,. We shall prove

THEOREM 1. m‘ = 1,.

NoraTion. Natural numbers will be <, 7, k, I, m, n, ordinals &, 3, 0;
cardinals \, #. |A| is the cardinality of A, 2, = Ssca 27 + N

M will be a model with universe | M|, with corresponding count-
able first-order language L(M). For a predicate Re L(M), the cor-
responding relation is R¥ or R(M), and if there is no danger of con-
fusion just R. Every M will have the one place predicate P and
individual constants ¢, such that P = P¥ = {¢,: n < @}, n+# m=>¢, # ¢,
(we shall not distinguish between the individual constants and their
interpretation). A type p in L is a set of formulas ®(x,) e L; p is
complete for T in L if it is consistent and for no @(x,) € L both
TUpU{o@)} and TU » U {— @(x,)} are consistent.

An element be|M| realizes p if @(x)ep implies M = P[b]
(&= -satisfaction sign), and M realizes p if some ac|M| realizes it.
A complete theory in L is a maximal consistent set of sentences of
L. For every permutation 6 of P, model M, and sublanguage L of
L(M) we define an Ehrenfeucht game EG(M, L, 6) between player 1
and II with ® moves as follows: in the nth move first player I chooses
1€ {0, 1} and af € | M| and secondly player II chooses a. e |M|. Player
II wins if the extension 6* of 6 defined by 6*(a}) = a! p.eserves all
atomic formulas of L. That is if R(z,, +--, #,) is an atomic tormula in
L, 6%(b;) is defined then M = RI[b,, ---, b,] iff M = R[0*(b,), «--, 0%(b,)].
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RemMARK. So if I chooses ai e P, II should choose al = 6(al).

Define I'(n,) = {0: 6 a permutation of P, n < n,=0(c,) = ¢, and
only for finitely many = 6(c,) #* ¢.}.

M| L is the reduct of M to the language L & L(M), that is
M| L is M without the relations R¥, Re L(M), R¢ L, and constants
¢, € L(M), ¢, ¢ L.

THEOREM 2. For every ordinal a < w, there is a countable first-
order language L, a complete theory T, in L, such that

(i) p={P@)} U {x, #c,:n < &} is a complete type for T,.

(ii) T, has a model of cardinality 2, omitting p.

(iii) T, has mo model of cardinality > 2, omitting p.

REMARK. Clearly Theorem 2 implies Theorem 1.

Proof. We shall define by induction on « < ®, models M, such
that

(1) || M,]], the cardinality of |M,|, is, 2, and of course
P=PM,) = {c,:n < w} and except for the e¢,’s L(M, has only
predicates.

(2) There is no model elementarily equivalent to M, of cardinality
> 3, which omits p.

(3) If @B)(@= B+ 2) then Q,e L(M,) and |Q.(M,)| = 3.

(4) For every finite sublanguage L of L(M,) there is n, =
n(L) < @, such that for every permutation 8¢ I"(n;) player II has a
winning strategy in EG(M,, L, 6).

(5) In (4) if @B)a = B + 2) then in the winning strategy of
II, if I chooses alec Q,(M,) then II chooses ai” = ai.

The induction will go as follows. First we define M,, M,, and M,;
later we define M,., by M, when (Ag)(@ = g + 2); last for limit
ordinal 6 we define M,;, M,,,, M,,, by M, a < 4.

But before defining the M,’s, let us show how this will finish
the proof. We choose L, = L(M,). T, is the set of sentences of L,
that M, satisfies. Clearly (i), (iii) are satisfied. To prove (i) let
P(%,) € L,, so for some finite sublanguage L of L, ®(x,) e L. By pos-
sibly interchanging @(x,) and — @(x,) we can assume M, = Ple, ]
For &k = n(L) let 6, be the permutation of P interchanging ¢, ¢, and
leaving the other elements fixed.

Clearly 6eI'(n;), hence player II has a winning strategy in
EG(M,, L, 6). By Ehrenfeucht [1] this implies ¢,y and ¢, = 0(c.)
satisfy the same formulas of L. Hence M, = ®lec. ] = Ple.], hence
M, = ®le,]. As this holds for any k= n(L) M, = (V2)[P@) A Nicny £ -
¢; — P@)]. Hence T,U » U {— ®(x,)} is inconsistent. So p is complete
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(for T,, L,) and we finish.
So let us define

Case I. a=0,1,2

(A) Let us define M,:

| M,| = P, and its only predicate is P (and of course the individual
constants ¢,, which we will not mention in later cases). Clearly (1),
(2) are immediate. (3) and (5) are satisfied vacuously. As for (4), let
n; = max {n + l:¢,e L}. Clearly 6 is an automorphism of M,| L (the
reduct of M, to L).

So player II will play by the automorphism: if I chooses a’, II
will choose al = 0(a}), and if I chooses a}, II will choose al = 67'(al).

(B) M| =[M|UP(M,), where P(M,) = F(| M, ), where
P (A) = the power set of A = {B: B& A}.

The predicates of M, are those of M,, P, and ¢,

&(M,) = {Ke, A):ce | M,|, Ac P, ce A}.

As in (A) it is clear that M, satisfies the induction conditions, as
if e I'(n,) L < L(M,), L finite, then 6 can be extended to an automor-
phism of M, by

0(4) % (6(c): c e 4) .

(C) Let us define an equivalence relation E, on P,(M,): AE\B
iff for some e I'(0) A = 6(B)[ = {0(c): ce B}].

This is an equivalence relation, as 77(0) is a group of permuta-
tions, and as |7I"(0) | = W,, each equivalence class is countable. Define

| M, | = | M, | U QM)
QM) = {S: S < P(M), A, Be P,, AE. B—Ac S —— Be S}
&(M) = {(A,S>: Ae P, SecQ, AcS}.

The relations of M, will be the relations of M,, and Q,, ¢,. By
the definition of Q,, each 6e I'(n,) [L a finite sublanguage of L(I1,)]
can be extended to an automorphism 6* of M,| L, which is the iden-
tity over Q,. As before (1), (2), (4) hold, and as 6* is the identity
over @, also (5) holds. As for (3) each FE -equivalence class is
countable, and |P,(M,)| = 2! = 2%, the number of FE -equivalence
classes is 2,, s0 | Q| = 2% = 2,.

Case II. We define M,.,, where M, is defined, (AR)(a = B + 2).
Let

] Ma-HI = | Ma' U ‘gé(Qu(Ma)) .
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The relations of M,,, will be those of M, and in addition
Qa+1(Ma+1) = W(Qa(Ma))

Cari(Marr) = (K@, AD: 0 € Qu(Mo), A € Quii(Mess), a € A} .

Clearly Conditions (1), (2), (3) are satisfied. As for (4), (5) the
winning strategy of player Il in EG(M,,,, L, 6)[6 € I'(n;)] will be as
follows: when I chooses elements in | M, | he will pretend all the game
is in | M, | and play accordingly; and if player I chooses a} € Q,1,(M,..),
then player II will choose ai* = ai. As M, satisfies (5) this is a
winning strategy, and trivially it satisfies (5).

Case III. 0 a limit ordinal, M, is defined for a < 6; and we shall
define M;, M,,,, M;,..

PART A. By changing, when necessary, names of elements and
relations, we can assume that for @« < g < 4,

\M, 0| M,| =P, and L(M)NL(M,) = (P, c.:n < @},

but that if (A8)(¢ = B + 2) then still Q,e L(M,). Choose an increas-
ing sequence of ordinals @, n < @, § = U,<., @, and (AB)(a, = B + 2).
Define M, as follows

|M;|= U M,, .

n
n<w

The relations of M; will be those of M, for each n < w and R}
7o = {c,ay:¢c=c, e P,ac (M, — P)}.

It is easy to check that Conditions (1), (2) are satisfied. Condi-
tions (3) and (5) are vacuous. So let us prove Condition (4) holds. Let
L be a finite sublanguage of L(IM;); then L & Uj<a, L; U {R}, where
L;=LNL(M,,) is a finite sublanguage of L(M,,). Define n,=
max [{rn;;:J < n} U {n}]. Let 6eI'(n,). We shall describe now the
winning strategy of player II in EG(M;, L, §). When player 1 will
choose 1€ {0, 1}, a; € M., j < m, player II will pretend all the game
is in the model M,,J., and so play his winning strategy for EG(Maj, LN
L(M.,), 6). If player I chooses i€ {0, 1}, a;e M, j = n, then player
II will choose a; "€ M,, [wherei = 0=k = 0(j), 1 = 1 =7 = 6(k)] such
that for any m < n ai, = o}, = a7’ = a}™".

Note that for j = n,, in M;| L, every permutation of elements of
M., is an automorphism, as the only relation an ae|M,,| satisfies is
Rile;, al.

PART B. Here we define M;.,. Let A* = U.<c, Qa,(M,,), and
[M5+1] = IMJU@(A*).
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The relations of M;,, will be those of M;, and in addition

Pa(Ma+1) = [Mb ly P5+1(Ma+1) = '99(14*)
&11(M,4,) = {¢b, BY: be A*, Be ZP(A*), be B} .

It is easy to see that Conditions (1), (2) are satisfied, and (3), (5)
are vacuous. So let us prove (4) — let L be a finite sublanguage of
L(M;.,). So

L< U L; U{R;, P;, Py, &4}, L; = L N L(Ma.;) .

<ng
Define again
ny = max [{n;: 7 < n} U {ng] -

Let 0e I"(n;) and we should describe player II’s winning strategy
in EG(M,,, L, 6). When player I chooses an element in M, j < n,
player II will ignore all elements chosen outside M, , and play by his
winning strategy in EG(M.;, L;, 6). In the other cases player II will
play so that the following conditions are satisfied for every =

P (1) ajePoi(M,,,) = ay, € Py (M)

P (2) if ¢; = 0(c;), then ase| M, | =a,e| M,

P (38) if m < n then a), = al = ai, = al

P (4) if m,l <n and o€ A*, o} P;,, then an€a} = a} € aj

P (5) ifaye Py, l<w,c=0(c) then a), N Qu,(M,) = a1, N Qu,(M.,)

P (6) if ¢;=0(c)] #k < w, then {ay:m=mn,ayeP;,> and
{ah: m < n, al, e P;,,> genarate corresponding finite Boolean algebras
of subsets of Q, (M,,) and Qaj (M,,J.) correspondingly; then the cor-
responding atoms in those algebras are both infinite, or have the
same power.

It is easy to see that this can by done, and it is a winning
strategy.

PArT C. Here we define M;,,.

Define equivalence relations FE,.,, K}, on P;.,(M,,,): if A, Be
P, (M;,,), then A, BS A* = U.<w Qan(Man); define AE; B iff AN
[Uisnss Qu, (Mo, )] = BN [Uusm>n Qu,(Me,)]; AE; B iff for some =
AE?. B.

Clearly each Ep?., is an equivalence relation, E7., refines EXl,
hence E;., is an equivalence relation.

It is clear that

|P6+1(M6+1) [ = din
but for every n < w, A e P,,,(M,,,)
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|{B: Be P;.,(M,.,), BE; A} | = | & (mLSJn Q., (M, )) |
= 23an = a1 =3
hence

|{B: Be P;,,(M,.,), BE;;,A}| < ; 2, =23,;.

So each E,,, — equivalence class has cardinality < 3,, hence there
are 1,., E;,-equivalence classes.
Define M,,,:

l Ma+2| = l M+1! U Q5+2(M5+2)

where
Qa+2(Ma+2) = {S: S< P5+1(M5+1), A, Be S; AE;,,B=— AecS+~—— Be S} .

Cleaﬂy ]Qa+2(%+2)| = 35+2-
The relations of M,,, will be those of M;,,, and Q,.,, and

Es2(Ms10) = (K4, SP: A€ Poy (M), S€ Poyo(M;y:), Ae S}

It is easy to prove all conditions are satisfied as in Case II, if
we notice that by Condition P (5) if for any instance of any game
EG(M;,,, L, 6)[6 € I"(n;)] in which player II plays his strategy, if ai, ai™
are chosen for some 7 and they belong to P,.,(M;,,) then they are
E;,-equivalent (as {n:6(c,) = n} is finite).
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