Pacific Journal of Mathematics

WHITEHEAD GROUPS OF TWISTED FREE ASSOCIATIVE ALGEBRAS

К. G. Сноо

Vol. 50, No. 2

October 1974

WHITEHEAD GROUPS OF TWISTED FREE ASSOCIATIVE ALGEBRAS

Koo-Guan Choo

Let R be an associative ring with identity and X a set of noncommuting variables $\{x_{\lambda}\}_{\lambda \in A}$. Let $R\{X\}$ be the free associative algebra on X over R. Then S. Gersten has shown that if $K_1R \to K_1R[t]$ is an isomorphism, where R[t] is the polynomial extension of R, then $K_1R \to K_1R\{X\}$ is an isomorphism. The purpose of this paper is to extend the result of

Gersten to twisted free associative algebras.

Let R be an associative ring with identity and X a set of noncommuting variables $\{x_{\lambda}\}_{\lambda \in A}$ and $\alpha = \{\alpha_{\lambda}\}_{\lambda \in A}$ a set of automorphisms α_{λ} of R. The α -twisted free associative algebra on X over R, denoted by $R_{\alpha}\{X\}$, is defined as follows:

Additively, $R_{a}\{X\} = R\{X\}$ so that its elements are finite linear combinations of words $w(x_{\lambda})$ in x_{λ} with coefficients in R.

If $w(x_{\lambda}) = x_{\lambda_1} \cdots x_{\lambda_k}$ is a word in x_{λ} , we denote the automorphism $\alpha_{\lambda_1} \cdots \alpha_{\lambda_k}$ by $w(\alpha_{\lambda})$.

Multiplication in $R_{a}\{X\}$ is given by:

$$(rw(x_{\lambda}))(r'w'(x_{\lambda})) = rw(\alpha_{\lambda})^{-1}(r')w(x_{\lambda})w'(x_{\lambda})$$
 ,

for any $rw(x_{\lambda})$, $r'w'(x_{\lambda}) \in R_{\mathfrak{a}}\{X\}$.

In particular, if $X = \{t\}$ and $a = \{\alpha\}$, then $R_{a}\{X\}$ is just the α -twisted polynomial ring $R_{\alpha}[t]$.

We shall consider $R_{\mathfrak{a}}\{X\}$ as an *R*-ring with augmentation ε_{X} : $R_{\mathfrak{a}}\{X\} \rightarrow R$ defined by $\varepsilon_{X}(x_{\lambda}) = 0$ for each $x_{\lambda} \in X$. Denoted by $\overline{K}_{1}R_{\mathfrak{a}}\{X\}$ the cokernel of the homomorphism $i_{*} \colon K_{1}R \rightarrow K_{1}R_{\mathfrak{a}}\{X\}$ induced by the inclusion $i \colon R \rightarrow R_{\mathfrak{a}}\{X\}$. Note that the augmentation ε_{X} induces a homomorphism $\varepsilon_{X^{*}} \colon K_{1}R_{\mathfrak{a}}\{X\} \rightarrow K_{1}R$ which splits i_{*} .

Let W(X) be the set of all the words $w(x_{\lambda})$ in x_{λ} . For each $w(x_{\lambda})$ in W(X), let β_w be the automorphism $w(\alpha_{\lambda})$, h_{β_w} the homomorphism of $R_{\beta_w}[t]$ into $R_{\mathfrak{a}}\{X\}$ defined by $h_{\beta_w}(t) = w(x_{\lambda})$ and \overline{h}_{β_w} the homomorphism of $\overline{K}_1 R_{\beta_w}[t]$ into $\overline{K}_1 R_{\mathfrak{a}}\{X\}$ induced by h_{β_w} . Then our main result is:

THEOREM 1. The group $\overline{K}_1R_a\{X\}$ is generated by the homomorphic images of $\overline{K}_1R_{\beta_w}[t]$ under \overline{h}_{β_w} and $w(x_{\lambda})$ runs over W(X).

As a consequence, we have:

THEOREM 2. (Twisted Case of Gersten's Theorem). If $K_1R \rightarrow K_1R_{\beta_w}[t]$ is an isomorphism for each β_w , then $K_1R \rightarrow K_1R_s\{X\}$ is an

isomorphism.

Now, let A be an invertible matrix over $R_{a}\{X\}$. By Higman's trick (cf. [4]), we can make A equivalent in $K_{1}R_{a}\{X\}$ to

$$B=B_{\scriptscriptstyle 0}+B_{\scriptscriptstyle 1}x_{\scriptscriptstyle 1}+\,\cdots\,+\,B_{\scriptscriptstyle n}x_{\scriptscriptstyle n}$$
 ,

where x_1, \dots, x_n are distinct elements of X and $B_i(i = 0, 1, \dots, n)$ are $m \times m$ matrices over R for some integer m. By applying the homomorphism ε_{X^*} to B, we deduce that B_0 is invertible. Hence A can be made equivalent in $\overline{K}_1 R_n \{X\}$ to

(1)
$$N = I + N_1 x_1 + \cdots + N_n x_n$$
,

where $N = B_0^{-1}B$ and $N_i = B_0^{-1}B_i$ $(i = 1, \dots, n)$.

The inverse of this matrix N can be written explicitly in the ring of formal power series. Since this inverse exists in $R_{a}\{X\}$, all but a finite number of the power series coefficients are zero. That is, if

$$M = M_0 + M_1 x_1 + \cdots + M_n x_n + \sum_{i,j=1}^n M_{i,j} x_i x_j + \cdots$$

is a matrix over $R_{a}\{X\}$, where all $M_{i}, M_{i,j}, \cdots$ are matrices over R, such that MN = NM = I, then there is an integer K > 0 such that $M_{i_{1},i_{2},\cdots,i_{k}} = 0$ for all k > K, where $i_{1}, i_{2}, \cdots, i_{k}$ run over $1, \cdots, n$ respectively. From NM = I, we get, by equating coefficients of monomials in the x's, the following relations:

$$egin{aligned} &M_0 &= I; \ &M_i &= - \, N_i \ &M_{i,j} &= N_i lpha_i^{-1}(N_j) \ &\vdots \ &M_{i_1,i_2,\cdots,i_l} &= (-1)^l N_{i_1} lpha_{i_1}^{-1}(N_{i_2}) \cdots (lpha_{i_1}^{-1} lpha_{i_2}^{-1} \cdots lpha_{i_{l-1}}^{-1})(N_{i_l}) \ &(i_1,\,i_2,\,\cdots,\,i_l &= 1,\,\cdots,\,n) \;. \end{aligned}$$

Hence, for all k > K,

$$(\ 2\) \qquad \qquad N_{i_1} lpha_{i_1}^{-1} (N_{i_1}) \cdots (lpha_{i_2}^{-1} lpha_{i_2}^{-1} \cdots lpha_{i_{k-1}}^{-1}) (N_{i_k}) = 0 \; .$$

Let us call a matrix P over R β -twisted nilpotent (β is any automorphism of R) if there exists an integer k > 0 such that

$$Peta^{\scriptscriptstyle -1}\!(P) \cdots eta^{\scriptscriptstyle -(k-1)}\!(P) = 0$$
 .

Hence, it follows from (2) that each $N_i(i = 1, \dots, n)$ in (1) is α_i -twisted nilpotent.

Our next lemma is the key to the main result:

LEMMA 3. The matrix N in (1) is a product of matrices of the form $I + Pw(x_1, \dots, x_n)$, where P is an $w(\alpha_1, \dots, \alpha_n)$ -twisted nilpotent matrix over R. $(w(x_1, \dots, x_n)$ denotes a word in x_1, \dots, x_n .)

Proof. Recall from (1) and (2) that each $N_i(i = 1, \dots, n)$ in (1) is α_i -twisted nilpotent. Consider

$$I+Q=(I-N_1x_1)\cdots(I-N_nx_n)N.$$

Then Q is of the form $\sum_j Q_j s_j$, where s_j is a monomial of degree at least two in the x_1, \dots, x_n . In fact, if $s_j = x_{i_1} x_{i_2} \cdots x_{i_l} (l \ge 2)$, then

$$(\ 3\) \qquad \qquad Q_j = \ \pm \ N_{i_1} \alpha_{i_1}^{-1} (N_{i_2}) \ \cdots \ (\alpha_{i_1}^{-1} \ \cdots \ \alpha_{i_{l-1}}^{-1}) (N_{i_l}) \ .$$

Hence, for k > K/2,

$$Q_jeta^{\scriptscriptstyle -1}\!(Q_j)\,\cdots\,eta^{\scriptscriptstyle -(k-1)}\!(Q_j)=0$$
 ,

for each j, where β is an automorphism obtained by replacing the x_i in s_j by α_i respectively. That is, Q_j is $s_j(\alpha_1, \dots, \alpha_n)$ -twisted nilpotent for each j. Now, consider

$$I+Q'=\prod\limits_{j}{(I-Q_{j}s_{j})(I+Q)}\;.$$

Then Q' is of the form $\sum_{\sigma} Q'_{\sigma} y_{\sigma}$, where each y_{σ} is a monomial of degree at least four in the x_1, \dots, x_n and for $l \ge 4$, Q'_{σ} is of the form as given on the right hand side of (3). Thus, for k > K/4,

$$Q'_{\sigma}\gamma^{-\scriptscriptstyle 1}(Q'_{\sigma})\,\cdots\,\gamma^{-\scriptscriptstyle (k-1)}(Q'_{\sigma})=0$$
 ,

for each σ , where γ is an automorphism obtained by replacing the x_i in y_{σ} by α_i respectively. That is, Q'_{σ} is $y_{\sigma}(\alpha_1, \dots, \alpha_n)$ -twisted nilpotent for each σ .

Left multiplying I + Q' by $\prod_{\sigma} (I - Q'_{\sigma}y_{\sigma})$, and repeating the above argument, we will finally arrive, after a finite steps (because of the finite bound K and condition (2)), at the conclusion that

$$\prod (I + Pw(x_1, \cdots, x_n)) \cdot N = I,$$

where P is an $w(\alpha_1, \dots, \alpha_n)$ -twisted nilpotent matrix over R and $w(x_1, \dots, x_n)$ is a word in x_1, \dots, x_n .

This completes the proof.

The above discussions are modifications of those given in [3] and ([1], p. 647) for (untwisted) free associative algebras; and the following result is already contained in the above proof (also cf. [2]).

LEMMA 4. For any automorphism β of R, $\overline{K}_{1}R_{\beta}[t]$ is generated by the elements of the form I + Pt, where P is an β -twisted nilpotent matrix over R.

Proof of Theorem 1. It follows immediately from Lemmas 3 and 4.

References

1. H. Bass, Algebraic K-Theory, W. A. Benjamin, Inc., New York, 1968.

2. H. Bass, A. Heller, and R. G. Swan, The Whitehead group of a polynomial extension, Publ. I. H. E. S. No. 22, (1964), 61-79.

3. S. Gersten, Whitehead groups of free associative algebras, Bull. Amer. Math. Soc., **71** (1965), 157-159.

4. G. Higman, The units of group rings, Proc. London Math. Soc., 46 (1940), 231-248.

Received October 18, 1972. This research was supported in part by a postgraduate fellowship of the National Research Council of Canada. It contains parts of the results from the author's doctoral thesis at the University of British Columbia written under the direction of Professor E. Luft. The author is most indebted to Professor E. Luft, and to Professor K. Y. Lam for their valuable suggestions and encouragement during the preparation of the thesis.

UNIVERSITY OF BRITISH COLUMBIA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105 J. DUGUNDJI*

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

K. YOSHIDA

ASSOCIATE EDITORS

E.F. BECKENBACH

B. H. NEUMANN

SUPPORTING INSTITUTIONS

F. WOLF

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$60.00 a year (6 Vols., 12 issues). Special rate: \$30.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Copyright © 1973 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics Vol. 50, No. 2 October, 1974

Mustafa Agah Akcoglu, John Philip Huneke and Hermann Rost, <i>A counter</i> example to the Blum Hanson theorem in general spaces	305
Huzihiro Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule	309
E. F. Beckenbach, Fook H. Eng and Richard Edward Tafel, Global	
properties of rational and logarithmico-rational minimal surfaces	355
David W. Boyd, A new class of infinite sphere packings	383
K. G. Choo, Whitehead Groups of twisted free associative algebras	399
Charles Kam-Tai Chui and Milton N. Parnes, <i>Limit sets of power series</i>	
outside the circles of convergence	403
Allan Clark and John Harwood Ewing, The realization of polynomial	
algebras as cohomology rings	425
Dennis Garbanati, Classes of circulants over the p-adic and rational	
integers	435
Arjun K. Gupta, On a "square" functional equation	449
David James Hallenbeck and Thomas Harold MacGregor, Subordination	
and extreme-point theory	455
Douglas Harris, <i>The local compactness of vX</i>	469
William Emery Haver, Monotone mappings of a two-disk onto itself which	
fix the disk's boundary can be canonically approximated by	
homeomorphisms	477
Norman Peter Herzberg, On a problem of Hurwitz	485
Chin-Shui Hsu, A class of Abelian groups closed under direct limits and	
subgroups formation	495
Bjarni Jónsson and Thomas Paul Whaley, Congruence relations and	
multiplicity types of algebras	505
Lowell Duane Loveland, Vertically countable spheres and their wild	
sets	521
Nimrod Megiddo, Kernels of compound games with simple components	531
Russell L. Merris, An identity for matrix functions	557
E. O. Milton, <i>Fourier transforms of odd and even tempered distributions</i>	563
Dix Hayes Pettey, One-one-mappings onto locally connected generalized	
continua	573
Mark Bernard Ramras, Orders with finite global dimension	583
Doron Ravdin, Various types of local homogeneity	589
George Michael Reed, On metrizability of complete Moore spaces	595
Charles Small, Normal bases for quadratic extensions	601
Philip C. Tonne, <i>Polynomials and Hausdorff matrices</i>	613
Robert Earl Weber, <i>The range of a derivation and ideals</i>	